Spatial failure mechanism of coastal bridges under extreme waves using high-efficient pseudo-fluid-structure interaction solution scheme

2021 ◽  
Vol 240 ◽  
pp. 109894
Author(s):  
Peng Yuan ◽  
Deming Zhu ◽  
You Dong
2021 ◽  
Vol 31 (5) ◽  
pp. 1373-1395
Author(s):  
Iman Mazinani ◽  
Mohammad Mohsen Sarafraz ◽  
Zubaidah Ismail ◽  
Ahmad Mustafa Hashim ◽  
Mohammad Reza Safaei ◽  
...  

Purpose Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges. Design/methodology/approach Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results. Findings The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research. Originality/value Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.


Author(s):  
Zhanhe Liu ◽  
Jinlou Quan ◽  
Jingyuan Yang ◽  
Dan Su ◽  
Weiwei Zhang

The time cost is very high by direct fluid-structure interaction method for mistuned bladed disk structures, so aerodynamic loads generally are ignored or treated as small perturbations in traditional flutter analysis. In order to analyze the flutter characteristics of mistuned blade rapidly and accurately, this paper presents an efficient fluid-structure interaction method based on aerodynamic reduced order model. system identification technology and two basic assumptions are used to build the unsteady aerodynamic reduced order model. Coupled the structural equations and the aerodynamic model in the state space, the flutter stability of mistuned bladed disk can be obtained by changing the structural parameters. For the STCF 4 example, the response calculated by this method agrees well with the results obtained by the direct CFD, but the computational efficiency is improved by nearly two orders of magnitude. This method is used to study the stiffness mistuned cascade system, and the stability characteristics of the system are obtained by calculating the eigenvalues of the aeroelastic matrix. The results show that the stiffness mistuning can significantly improve the flutter stability of the system, and also lead to the localization of the mode. The mistuning mode, mistuning amplitude and fluid structure interaction can influence the flutter stability obviously.


Sign in / Sign up

Export Citation Format

Share Document