Optimal ground motion intensity measure selection for probabilistic seismic demand modeling of fixed pile-founded offshore platforms

2021 ◽  
Vol 242 ◽  
pp. 110116
Author(s):  
Samira Babaei ◽  
R. Amirabadi ◽  
T. Taghikhany ◽  
M. Sharifi
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Luqi Xie ◽  
Jing Wu ◽  
Qing Huang ◽  
Chao Tong

The analysis of the ductility and cumulative plastic deformation (CPD) demand of a high-performance buckling-restrained brace (HPBRB) under a strong earthquake and its aftershocks is conducted in this paper. A combination of three continuous excitations with the same ground motion is used to simulate the affection of a strong earthquake and its aftershocks. A six-story HPBRB frame (HPBRBF) is taken as an example to conduct the incremental dynamic analysis (IDA). The seismic responses of the HPBRBF under one, two, and three constant continuous ground motions are compared. The IDA result indicates that the ductility and CPD demand of the BRBs under the three constant continuous ground motions are significantly larger than that excited by only one. Probabilistic seismic demand analysis (PSDA) is performed using seven near-fault ground motions and seven far-fault ground motions to consider the indeterminacy of ground motion. The probabilistic seismic demand curves (PSDCs) for the ductility and CPD demand for the HPBRB under the strong earthquake and its aftershocks are obtained in combining the probabilistic seismic hazard analysis. The results indicate that the AISC threshold value of the CPD with 200 is excessively low for a HPBRBF which suffers the continuous strong aftershocks with near-fault excitations, and a stricter threshold value should be suggested to ensure the ductility and plastic deformation capacity demand of the HPBRB.


2017 ◽  
Vol 99 ◽  
pp. 97-107 ◽  
Author(s):  
Edén Bojórquez ◽  
Robespierre Chávez ◽  
Alfredo Reyes-Salazar ◽  
Sonia E. Ruiz ◽  
Juan Bojórquez

2011 ◽  
Vol 38 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Lan Lin ◽  
Nove Naumoski ◽  
Murat Saatcioglu ◽  
Simon Foo

This is the second of two companion papers on improved intensity measures of strong seismic ground motions for use in probabilistic seismic demand analysis of reinforced concrete frame buildings. The first paper discusses the development of improved intensity measures. This paper describes the application of the developed intensity measures in probabilistic seismic demand analysis. The application is illustrated on the three reinforced concrete frame buildings (4, 10, and 16-storey high) that were used in the first paper. This involved computations of the seismic responses of the structures and the seismic hazard using the improved intensity measures. The response and the hazard results were then combined by means of probabilistic seismic demand analysis to determine the mean annual frequencies of exceeding specified response levels due to future earthquakes (i.e., the probabilistic seismic demands). For the purpose of comparison, probabilistic seismic demand analyses were also conducted by employing the spectral acceleration at the fundamental structural periods (Sa(T1)) as an intensity measure, which is currently the most used in practice. It was found that the use of the improved intensity measures results in significantly lower seismic demands relative to those corresponding to the intensity measure represented by Sa(T1), especially for long period structures.


Sign in / Sign up

Export Citation Format

Share Document