demand model
Recently Published Documents


TOTAL DOCUMENTS

1073
(FIVE YEARS 306)

H-INDEX

45
(FIVE YEARS 7)

2022 ◽  
Vol 14 (2) ◽  
pp. 964
Author(s):  
Derek Hungness ◽  
Raj Bridgelall

Transportation planning has historically relied on statistical models to analyze travel patterns across space and time. Recently, an urgency has developed in the United States to address outdated policies and approaches to infrastructure planning, design, and construction. Policymakers at the federal, state, and local levels are expressing greater interest in promoting and funding sustainable transportation infrastructure systems to reduce the damaging effects of pollutive emissions. Consequently, there is a growing trend of local agencies transitioning away from the traditional level-of-service measures to vehicle miles of travel (VMT) measures. However, planners are finding it difficult to leverage their investments in their regional travel demand network models and datasets in the transition. This paper evaluates the applicability of VMT forecasting and impact assessment using the current travel demand model for Dane County, Wisconsin. The main finding is that exploratory spatial data analysis of the derived data uncovered statistically significant spatial relationships and interactions that planners cannot sufficiently visualize using other methods. Planners can apply these techniques to identify places where focused VMT remediation measures for sustainable networks and environments can be most cost-effective.


2022 ◽  
Author(s):  
David Simchi-Levi ◽  
Rui Sun ◽  
Huanan Zhang

We study in this paper a revenue-management problem with add-on discounts. The problem is motivated by the practice in the video game industry by which a retailer offers discounts on selected supportive products (e.g., video games) to customers who have also purchased the core products (e.g., video game consoles). We formulate this problem as an optimization problem to determine the prices of different products and the selection of products for add-on discounts. In the base model, we focus on an independent demand structure. To overcome the computational challenge of this optimization problem, we propose an efficient fully polynomial-time approximation scheme (FPTAS) algorithm that solves the problem approximately to any desired accuracy. Moreover, we consider the problem in the setting in which the retailer has no prior knowledge of the demand functions of different products. To solve this joint learning and optimization problem, we propose an upper confidence bound–based learning algorithm that uses the FPTAS optimization algorithm as a subroutine. We show that our learning algorithm can converge to the optimal algorithm that has access to the true demand functions, and the convergence rate is tight up to a certain logarithmic term. We further show that these results for the independent demand model can be extended to multinomial logit choice models. In addition, we conduct numerical experiments with the real-world transaction data we collect from a popular video gaming brand’s online store on Tmall.com. The experiment results illustrate our learning algorithm’s robust performance and fast convergence in various scenarios. We also compare our algorithm with the optimal policy that does not use any add-on discount. The comparison results show the advantages of using the add-on discount strategy in practice. This paper was accepted by J. George Shanthikumar, big data analytics.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Hongxiao Wang ◽  
Qiang Li ◽  
Sang-Bing Tsai

With the rapid economic development and urbanization process accelerating, motor vehicle ownership in large cities is increasing year by year; urban traffic congestion, parking difficulties, and other problems are becoming increasingly serious; in ordinary daily life, continuous risk of disturbance, having a flexible transportation system network is more able to alleviate daily congestion in the city, and the main thing about flexible transportation network is its algorithm. It is worth noting that congestion in many cities is generally reflected in the main roads, while many secondary roads and branch roads are underutilized, and the limited road resources in cities are not fully utilized. As an economic and effective road traffic management measure, one-way traffic can balance the spatial and temporal distribution of traffic pressure within the road network, make full use of the existing urban road network capacity, and solve the traffic congestion problem. Therefore, it is of great theoretical and practical significance to develop a reasonable and scientific one-way traffic scheme according to the characteristics of traffic operation in different regions. Based on the fixed demand model, the influence of traffic demand changes is further considered, the lower-level model is designed as an elastic demand traffic distribution model, the excess demand method is used to transform the elastic demand problem into an equivalent fixed demand problem based on the extended network, and the artificial bee colony algorithm based on risk perturbation is designed to solve the two-level planning model. The case study gives a one-way traffic organization optimization scheme that integrates three factors, namely, the average load degree overload limit of arterial roads, the detour coefficient, and the number of on-street parking spaces on feeder roads, and performs sensitivity analysis on the demand scaling factor.


2022 ◽  
Vol 355 ◽  
pp. 02014
Author(s):  
Qian Zhang ◽  
Xinhong Li

Responsive space launch is currently developing rapidly and has application cases in many fields, with advantages such as fast response speed and flexible networking. Aiming at the efficiency evaluation of responsive space launch system, this article first summarizes the typical process of fast space launch, and then gives a hierarchical model of a space fast launch system based on timed colored Petri nets, including top-level model, demand model, command decision model, launch Model, measurement and control model, and finally use CPN Tools to simulate and verify the model, analyze the basic characteristics of the model and the performance of the system, and provide data support and theoretical basis for the optimization of the fast space launch system.


2021 ◽  
Vol 28 (2) ◽  
pp. 61-71
Author(s):  
Byung Heon Jung ◽  
Hee Han ◽  
Ki Dong Kim ◽  
Doo Ahn Kwak ◽  
Jong Su Yim ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0258792
Author(s):  
Jiawei Cui ◽  
Ailan Che ◽  
Sheng Li ◽  
Yongfeng Cheng

Frequent earthquakes in strong earthquake areas pose a great threat to the safety operation of electric power facilities. There exists a pressing research need to develop an assessment method for the seismic risk of substations, i.e., the hubs of power system networks. In this study, based on Incremental Dynamic Analysis (IDA), Probabilistic Seismic Demand Model (PSDM) and reliability theory, a vulnerability model for a substation is obtained, based on considering the relationships between Peak Ground Acceleration (PGA) and four seismic damage states (complete, extensive, moderate, and slight.) via a probabilistic approach. After an earthquake, the scope of influence and PGA distribution are evaluated using information recorded by the seismic observation stations, based on using interpolation or an empirical formula for the PGA attenuation. Therefore, the seismic risk can be evaluated by combining ground motion evaluation and the pre-built vulnerability model. The Wuqia- Kashgar area of Xinjiang was selected as the study area; it is an Earthquake-prone area, and one of the starting points for new energy transmission projects in China. Under a hypothetical earthquake (MS 7.9), the seismic risk of the substations was evaluated. The results show that: this method is able to give the probabilities of the four damage states of the substations, four substations close to the epicenter only have a probability of slight damage (45%-88%) and other substations are safer.


2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
Fakher Eldin M. Suliman ◽  
◽  
Elfatih A. Elsheikh ◽  

The main objective of this study is to identify and calculate the necessary variables for a building that can be used as input data in energy simulation tools and to determine the cooling energy consumption buildings and to examine the influence of applying energy rationalization measures. Based on that, we developed, applied, and validated a Simulink-based energy demand model of a governmental building to quantify the amount of cooling energy consumption in a case study environment. The model includes an air conditioner (plant model), controlled by a thermostat (controller model), to cool the laboratory building (environment model) to the desired temperature. The processes used here to construct the model layout and algorithm design can be extended to accommodate other multipart models or different construction sectors.


Sign in / Sign up

Export Citation Format

Share Document