Interannual and decadal variability of the subtropical mode water formation in the South Pacific Ocean

2012 ◽  
Vol 47 ◽  
pp. 96-112 ◽  
Author(s):  
Zhen Li
2020 ◽  
Author(s):  
Jiale Lou ◽  
Terence O'Kane ◽  
Neil Holbrook

<p>A multivariate linear inverse model (LIM) is developed to demonstrate the mechanisms and seasonal predictability of the dominant modes of variability from the tropical and South Pacific Oceans. We construct a LIM whose covariance matrix is a combination of principal components derived from tropical and extra-tropical sea surface temperature, and South Pacific Ocean vertically-averaged temperature anomalies. Eigen-decomposition of the linear deterministic system yields stationary and/or propagating eigenmodes, of which the least damped modes resemble the El-Niño Southern Oscillation (ENSO) and the South Pacific Decadal Oscillation (SPDO). We show that although the oscillatory periods of ENSO and SPDO are distinct, they have very close damping time scales, indicating the predictive skill of the surface ENSO and SPDO is comparable. The most damped noise modes occur in the mid-latitude South Pacific Ocean, reflecting atmospheric eastward-propagating Rossby wave train variability. We argue that these ocean wave trains occur due to the atmospheric high-frequency variability of the Pacific South American pattern imprinting onto the surface ocean. The ENSO spring predictability barrier is apparent in LIM predictions initialized in Mar-May (MAM) but nevertheless displays significant correlation skill of up to ~3 months. For the SPDO, the predictability barrier tends to appear in June-September (JAS), indicating remote but delayed influences from the Tropics. We demonstrate that subsurface processes in the South Pacific Ocean are the main source of decadal variability, and further that by characterizing the upper ocean temperature contribution in the LIM the seasonal predictability of both ENSO and the SPDO variability is increased.</p>


2020 ◽  
Vol 33 (11) ◽  
pp. 4537-4554 ◽  
Author(s):  
Jiale Lou ◽  
Terence J. O’Kane ◽  
Neil J. Holbrook

AbstractA multivariate linear inverse model (LIM) is developed to demonstrate the mechanisms and seasonal predictability of the dominant modes of variability from the tropical and South Pacific Oceans. We construct a LIM whose covariance matrix is a combination of principal components derived from tropical and extratropical sea surface temperature, and South Pacific Ocean vertically averaged temperature anomalies. Eigen-decomposition of the linear deterministic system yields stationary and/or propagating eigenmodes, of which the least damped modes resemble El Niño–Southern Oscillation (ENSO) and the South Pacific decadal oscillation (SPDO). We show that although the oscillatory periods of ENSO and SPDO are distinct, they have very close damping time scales, indicating that the predictive skill of the surface ENSO and SPDO is comparable. The most damped noise modes occur in the midlatitude South Pacific Ocean, reflecting atmospheric eastward-propagating Rossby wave train variability. We argue that these ocean wave trains occur due to the high-frequency atmospheric variability of the Pacific–South American pattern imprinting onto the surface ocean. The ENSO spring predictability barrier is apparent in LIM predictions initialized in March–May (MAM) but displays a significant correlation skill of up to ~3 months. For the SPDO, the predictability barrier tends to appear in June–September (JAS), indicating remote but delayed influences from the tropics. We demonstrate that subsurface processes in the South Pacific Ocean are the main source of decadal variability and further that by characterizing the upper ocean temperature contribution in the LIM, the seasonal predictability of both ENSO and the SPDO variability is increased.


Tellus ◽  
1974 ◽  
Vol 26 (1-2) ◽  
pp. 136-142 ◽  
Author(s):  
J. W. Swinnerton ◽  
R. A. Lamontagne

2021 ◽  
Vol 169 ◽  
pp. 112535
Author(s):  
Martin Thiel ◽  
Bárbara Barrera Lorca ◽  
Luis Bravo ◽  
Iván A. Hinojosa ◽  
Hugo Zeballos Meneses

2008 ◽  
Vol 5 (2) ◽  
pp. 323-338 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia

Abstract. One of the major objectives of the BIOSOPE cruise, carried out on the R/V Atalante from October-November 2004 in the South Pacific Ocean, was to establish productivity rates along a zonal section traversing the oligotrophic South Pacific Gyre (SPG). These results were then compared to measurements obtained from the nutrient – replete waters in the Chilean upwelling and around the Marquesas Islands. A dual 13C/15N isotope technique was used to estimate the carbon fixation rates, inorganic nitrogen uptake (including dinitrogen fixation), ammonium (NH4) and nitrate (NO3) regeneration and release of dissolved organic nitrogen (DON). The SPG exhibited the lowest primary production rates (0.15 g C m−2 d−1), while rates were 7 to 20 times higher around the Marquesas Islands and in the Chilean upwelling, respectively. In the very low productive area of the SPG, most of the primary production was sustained by active regeneration processes that fuelled up to 95% of the biological nitrogen demand. Nitrification was active in the surface layer and often balanced the biological demand for nitrate, especially in the SPG. The percentage of nitrogen released as DON represented a large proportion of the inorganic nitrogen uptake (13–15% in average), reaching 26–41% in the SPG, where DON production played a major role in nitrogen cycling. Dinitrogen fixation was detectable over the whole study area; even in the Chilean upwelling, where rates as high as 3 nmoles l−1 d−1 were measured. In these nutrient-replete waters new production was very high (0.69±0.49 g C m−2 d−1) and essentially sustained by nitrate levels. In the SPG, dinitrogen fixation, although occurring at much lower daily rates (≈1–2 nmoles l−1 d−1), sustained up to 100% of the new production (0.008±0.007 g C m−2 d−1) which was two orders of magnitude lower than that measured in the upwelling. The annual N2-fixation of the South Pacific is estimated to 21×1012g, of which 1.34×1012g is for the SPG only. Even if our "snapshot" estimates of N2-fixation rates were lower than that expected from a recent ocean circulation model, these data confirm that the N-deficiency South Pacific Ocean would provide an ideal ecological niche for the proliferation of N2-fixers which are not yet identified.


Sign in / Sign up

Export Citation Format

Share Document