water formation
Recently Published Documents


TOTAL DOCUMENTS

630
(FIVE YEARS 106)

H-INDEX

64
(FIVE YEARS 5)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 183
Author(s):  
Jorge Cored ◽  
Mengen Wang ◽  
Nusnin Akter ◽  
Zubin Darbari ◽  
Yixin Xu ◽  
...  

Confined nanosized spaces at the interface between a metal and a seemingly inert material, such as a silicate, have recently been shown to influence the chemistry at the metal surface. In prior work, we observed that a bilayer (BL) silica on Ru(0001) can change the reaction pathway of the water formation reaction (WFR) near room temperature when compared to the bare metal. In this work, we looked at the effect of doping the silicate with Al, resulting in a stoichiometry of Al0.25Si0.75O2. We investigated the kinetics of WFR at elevated H2 pressures and various temperatures under interfacial confinement using ambient pressure X-ray photoelectron spectroscopy. The apparent activation energy was lower than that on bare Ru(0001) but higher than that on the BL-silica/Ru(0001). The apparent reaction order with respect to H2 was also determined. The increased residence time of water at the surface, resulting from the presence of the BL-aluminosilicate (and its subsequent electrostatic stabilization), favors the so-called disproportionation reaction pathway (*H2O + *O ↔ 2 *OH), but with a higher energy barrier than for pure BL-silica.


2021 ◽  
Vol 17 (6) ◽  
pp. 2327-2341
Author(s):  
Ryan Love ◽  
Heather J. Andres ◽  
Alan Condron ◽  
Lev Tarasov

Abstract. Freshwater, in the form of glacial runoff, is hypothesized to play a critical role in centennial- to millennial-scale climate variability, such as the Younger Dryas and Dansgaard–Oeschger events, but this relationship is not straightforward. Large-scale glacial runoff events, such as Meltwater Pulse 1a (MWP1a), are not always temporally proximal to subsequent large-scale cooling. Moreover, the typical design of hosing experiments that support this relationship tends to artificially amplify the climate response. This study explores the impact that limitations in the representation of runoff in conventional “hosing” simulations has on our understanding of this relationship by examining where coastally released freshwater is transported when it reaches the ocean. We particularly focus on the impact of (1) the injection of freshwater directly over sites of deep-water formation (DWF) rather than at runoff locations (i.e. hosing), (2) excessive freshwater injection volumes (often by a factor of 5), and (3) the use of present-day (rather than palaeo) ocean gateways. We track the routing of glaciologically constrained freshwater volumes from four different inferred injection locations in a suite of eddy-permitting glacial ocean simulations using the Massachusetts Institute of Technology General Circulation Model (MITgcm) under both open and closed Bering Strait conditions. Restricting freshwater forcing values to realistic ranges results in less spreading of freshwater across the North Atlantic and indicates that the freshwater anomalies over DWF sites depend strongly on the geographical location of meltwater input. In particular, freshwater released into the Gulf of Mexico generates a very weak freshwater signal over DWF regions as a result of entrainment by the turbulent Gulf Stream. In contrast, freshwater released into the Arctic with an open Bering Strait or from the Eurasian ice sheet is found to generate the largest salinity anomalies over DWF regions in the North Atlantic and GIN (Greenland–Iceland–Norwegian) seas region respectively. Experiments show that when the Bering Strait is open, the Mackenzie River source exhibits more than twice as much freshening of the North Atlantic deep-water formation regions as when the Bering Strait is closed. Our results illustrate that applying freshwater hosing directly into the North Atlantic with even “realistic” freshwater amounts still overestimates the amount of terrestrial runoff reaching DWF regions. Given the simulated salinity anomaly distributions and the lack of reconstructed impact on deep-water formation during the Bølling–Allerød, our results support that the majority of the North American contribution to MWP1a was not routed through the Mackenzie River.


2021 ◽  
Vol 272 ◽  
pp. 107231
Author(s):  
John M. Doherty ◽  
Yuet F. Ling ◽  
Christelle Not ◽  
Dirk Erler ◽  
Henning A. Bauch ◽  
...  

2021 ◽  
Vol 8 ◽  
pp. 39-45
Author(s):  
Robert Glenn Johnson

The extremely heavy precipitation that initiated the Last Ice Age (the Wisconsin Glaciation in Canada) was caused by a strong and persistent atmospheric low-pressure system centered over the northern Labrador Sea and southern Baffin Bay. This system, called the Labrador Low, was dependent on strong deep-water formation in the northern end of Baffin Bay. The replacement for the sinking deep water consisted of warmer and more saline Irminger Current water that mixed into the northward-flowing West Greenland Current near the center of the Labrador Low. The heavy precipitation in northeastern Canada began after the stratification in Baffin Bay was eliminated by the southward flow of denser Atlantic water through the Nares Strait. This temporary flow began when the oscillating Atlantic Meridional Oceanic Circulation (AMOC) flow reached a maximum greater than today. This sent Atlantic water westward, north of Greenland and through the Nares Strait. Although the extremely heavy snowfall began the Wisconsin Glaciation in Canada, the initiation of the Last Ice Age in Eurasia was a more complex process and was delayed by about 4,000 years by formation of the Hudson Strait ice dam.


Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1353-1365
Author(s):  
Tillys Petit ◽  
M. Susan Lozier ◽  
Simon A. Josey ◽  
Stuart A. Cunningham

Abstract. Wintertime convection in the North Atlantic Ocean is a key component of the global climate as it produces dense waters at high latitudes that flow equatorward as part of the Atlantic Meridional Overturning Circulation (AMOC). Recent work has highlighted the dominant role of the Irminger and Iceland basins in the production of North Atlantic Deep Water. Dense water formation in these basins is mainly explained by buoyancy forcing that transforms surface waters to the deep waters of the AMOC lower limb. Air–sea fluxes and the ocean surface density field are both key determinants of the buoyancy-driven transformation. We analyze these contributions to the transformation in order to better understand the connection between atmospheric forcing and the densification of surface water. More precisely, we study the impact of air–sea fluxes and the ocean surface density field on the transformation of subpolar mode water (SPMW) in the Iceland Basin, a water mass that “pre-conditions” dense water formation downstream. Analyses using 40 years of observations (1980–2019) reveal that the variance in SPMW transformation is mainly influenced by the variance in density at the ocean surface. This surface density is set by a combination of advection, wind-driven upwelling and surface fluxes. Our study shows that the latter explains ∼ 30 % of the variance in outcrop area as expressed by the surface area between the outcropped SPMW isopycnals. The key role of the surface density in SPMW transformation partly explains the unusually large SPMW transformation in winter 2014–2015 over the Iceland Basin.


2021 ◽  
pp. 1
Author(s):  
Anaïs Bretones ◽  
Kerim H. Nisancioglu ◽  
Mari F. Jensen ◽  
Ailin Brakstad ◽  
Shuting Yang

AbstractWhile a rapid sea-ice retreat in the Arctic has become ubiquitous, the potential weakening of the Atlantic Meridional Overturning Circulation (AMOC) in response to global warming is still under debate. As deep mixing occurs in the open-ocean close to the sea-ice edge, the strength and vertical extent of the AMOC is likely to respond to ongoing and future sea-ice retreat. Here, we investigate the link between changes in Arctic sea-ice cover and AMOC strength in a long simulation with the EC-Earth-PISM climate model under the emission scenario RCP8.5. The extended duration of the experiment (years 1850-2300) captures the disappearance of summer sea ice in 2060 and the removal of winter sea ice in 2165. By introducing a new metric, the Arctic Meridional Overturning Circulation (ArMOC), we document changes beyond the Greenland-Scotland Ridge and into the central Arctic. We find an ArMOC strengthening as the areas of deep mixing move north, following the retreating winter sea-ice edge into the Nansen Basin. At the same time, mixing in the Labrador and Greenland Seas reduces and the AMOC weakens. As the winter sea-ice edge retreats further into the regions with high surface freshwater content in the central Arctic Basin, the mixing becomes shallower and the ArMOC weakens. Our results suggest that the location of deep-water formation plays a decisive role in the structure and strength of the ArMOC; however, the intermittent strengthening of the ArMOC and convection north of the Greenland-Scotland Ridge cannot compensate for the progressive weakening of the AMOC.


2021 ◽  
Author(s):  
Iván Manuel Parras Berrocal ◽  
Ruben Vazquez ◽  
William David CabosNarvaez ◽  
Dimitry Sein ◽  
Oscar Alvarez Esteban ◽  
...  

Author(s):  
Yarisbel Garcia‐Quintana ◽  
Nathan Grivault ◽  
Xianmin Hu ◽  
Paul G. Myers

Sign in / Sign up

Export Citation Format

Share Document