Slow light engineering in polyatomic photonic crystal waveguides based on square lattice

2011 ◽  
Vol 284 (24) ◽  
pp. 5829-5832 ◽  
Author(s):  
Daobin Wang ◽  
Jie Zhang ◽  
Lihua Yuan ◽  
Jingli Lei ◽  
Sai Chen ◽  
...  
PIERS Online ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 273-278 ◽  
Author(s):  
David J. Moss ◽  
B. Corcoran ◽  
C. Monat ◽  
Christian Grillet ◽  
T. P. White ◽  
...  

2010 ◽  
Vol 18 (15) ◽  
pp. 15484 ◽  
Author(s):  
James F. McMillan ◽  
Mingbin Yu ◽  
Dim-Lee Kwong ◽  
Chee Wei Wong

2018 ◽  
Vol 8 (10) ◽  
pp. 1858 ◽  
Author(s):  
Qiuyue Zhang ◽  
Xun Li

In conventional photonic crystal systems, extrinsic scattering resulting from random manufacturing defects or environmental changes is a major source of loss that causes performance degradation, and the backscattering loss is amplified as the group velocity slows down. In order to overcome the limitations in slow light systems, we propose a backscattering-immune slow light waveguide design. The waveguide is based on an interface between a square lattice of magneto-optical photonic crystal with precisely tailored rod radii of the first two rows and a titled 45 degrees square lattice of Alumina photonic crystal with an aligned band gap. High group indices of 77, 68, 64, and 60 with the normalized frequency bandwidths of 0.444%, 0.481%, 0.485%, and 0.491% are obtained, respectively. The corresponding normalized delay-bandwidth products remain around 0.32 for all cases, which are higher than previously reported works based on rod radius adjustment. The robustness for the edge modes against different types of interfacial defects is observed for the lack of backward propagation modes at the same frequencies as the unidirectional edge modes. Furthermore, the transmission direction can be controlled by the sign of the externally applied magnetic field normal to the plane.


2014 ◽  
Vol 926-930 ◽  
pp. 415-418
Author(s):  
Yong Wan ◽  
Yue Guo ◽  
Jing Gao ◽  
Ming Hui Jia

Crescent scatterers possess the properties of anisotropy and multiple degrees of freedom. With plane-wave expansion method (PWE), the slow light effect with high ngand low dispersion can be achieved by optimizing the structure parameters of photonic crystal waveguide with line defect, such as changing the radius of two circles and center distance. Slow light with low dispersion can be obtained by these methods, which implies that choosing suitable scatterers and adjusting their parameters can efficiently achieve slow light with high ng and low dispersion.


Sign in / Sign up

Export Citation Format

Share Document