New color image encryption scheme based on multi-parameter fractional discrete Tchebyshev moments and nonlinear fractal permutation method

2022 ◽  
Vol 150 ◽  
pp. 106881
Author(s):  
Chen-Feng Duan ◽  
Jie Zhou ◽  
Li-Hua Gong ◽  
Jun-Yun Wu ◽  
Nan-Run Zhou
Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 843 ◽  
Author(s):  
Congxu Zhu ◽  
Guojun Wang ◽  
Kehui Sun

This paper presents an improved cryptanalysis of a chaos-based image encryption scheme, which integrated permutation, diffusion, and linear transformation process. It was found that the equivalent key streams and all the unknown parameters of the cryptosystem can be recovered by our chosen-plaintext attack algorithm. Both a theoretical analysis and an experimental validation are given in detail. Based on the analysis of the defects in the original cryptosystem, an improved color image encryption scheme was further developed. By using an image content–related approach in generating diffusion arrays and the process of interweaving diffusion and confusion, the security of the cryptosystem was enhanced. The experimental results and security analysis demonstrate the security superiority of the improved cryptosystem.


2014 ◽  
Vol 602-605 ◽  
pp. 3498-3502 ◽  
Author(s):  
Huai Xun Zhao ◽  
Peng Cheng ◽  
Jun Hao Han

This letter presents a new color image encryption scheme based on the coupled chaos maps. First, the algorithm uses the coupled logistic map to generate random strong key stream, and then designed a kind of initial simple diffusion-joint scrambling-combined diffusion method from the point of the relationships of components R, G, B. The simulation results indicate that this algorithm has stronger security compared with the independent encryption of each color component.


Sign in / Sign up

Export Citation Format

Share Document