Genesis of the Shiyaogou Porphyry Mo Deposit at East Qinling, China: evidence from geochronological, fluid inclusion, geochemical whole-rock and isotope studies

2021 ◽  
pp. 104263
Author(s):  
Rongzhen Zhang ◽  
Dehui Zhang ◽  
Mingqian Wu ◽  
Hongxing Hou ◽  
Xiaolong Li
Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Qihai Shu ◽  
Yong Lai

The Haisugou porphyry Mo deposit is located in the northern Xilamulun district, northeastern China. Based on alteration and mineralization styles and crosscutting relationships, the hydrothermal evolution in Haisugou can be divided into three stages: an early potassic alteration stage with no significant metal deposition, a synmineralization sericite-chlorite alteration stage with extensive Mo precipitation, and a postmineralization stage characterized by barren quartz and minor calcite and fluorite. The coexistence of high-salinity brine inclusions with low-salinity inclusions both in potassic alteration stage (~440°C) and locally in the early time of mineralization stage (380–320°C) indicates the occurrence of fluid boiling. The positive correlations between the homogenization temperatures and the salinities of the fluids and the low oxygen isotopic compositions (δ18Ofluid < 3‰) of the syn- to postmineralization quartz together suggest the mixing of magmatic fluids with meteoric water, which dominated the whole mineralization process. The early boiling fluids were not responsible for ore precipitation, whereas the mixing with meteoric water, which resulted in temperature decrease and dilution that significantly reduced the metal solubility, should have played the major role in Mo mineralization. Combined fluid inclusion microthermometry and chlorite geothermometer results reveal that ore deposition mainly occurred between 350 and 290°C in Haisugou.


2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Lara Loughrey ◽  
Dan Marshall ◽  
Peter Jones ◽  
Paul Millsteed ◽  
Arthur Main

AbstractThe Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich ‘striped’ colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.


2012 ◽  
Vol 76 (1) ◽  
pp. 213-226 ◽  
Author(s):  
D. Marshall ◽  
V. Pardieu ◽  
L. Loughrey ◽  
P. Jones ◽  
G. Xue

AbstractPreliminary geological work on samples from Davdar in China indicate that emerald occurs in quartz veins hosted within upper greenschist grade Permian metasedimentary rocks including quartzite, marble, phyllite and schist. Fluid inclusion studies indicate highly saline fluids ranging from approximately 34 to 41 wt.% NaCl equivalent, with minimal amounts of CO2 estimated at a mole fraction of 0.003. Fluid inclusion, stable isotope and petrographic studies indicate the Davdar emeralds crystallized from highly saline brines in greenschist facies conditions at a temperature of ∼350°C and a pressure of up to 160 MPa. The highly saline fluid inclusions in the emeralds, the trace-element chemistry and stable isotope signatures indicate that the Davdar emeralds have some similarities to the Khaltaro and Swat Valley emerald deposits in Pakistan, but they show the greatest similarity to neighbouring deposits at Panjshir in Afghanistan.


2016 ◽  
Vol 121 ◽  
pp. 119-135 ◽  
Author(s):  
Rabah Laouar ◽  
Sihem Salmi-Laouar ◽  
Lounis Sami ◽  
Adrian J. Boyce ◽  
Omar Kolli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document