potassic alteration
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 0)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yury O. Redin ◽  
Anna A. Redina ◽  
Viktor P. Mokrushnikov ◽  
Alexandra V. Malyutina ◽  
Vladislav F. Dultsev

The Kultuma deposit is among the largest and most representative Au–Cu–Fe–skarn deposits situated in Eastern Transbaikalia. However, its genetic classification is still a controversial issue. The deposit is confined to the similarly named massif of the Shakhtama complex, which is composed mainly of quartz monzodiorite-porphyry and second-phase monzodiorite-porphyry. The magmatic rocks are characterized by a low Fe2O3/FeO ratio, low magnetic susceptibility and belong to meta-aluminous, magnesian high-potassic calc-alkalic reduced granitoids of type I. The results of 40Ar-39Ar and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating showed that the formation of magmatic rocks proceeded during the Late Jurassic time: 161.5–156.8 Ma. Relatively low Ce/Ce*, Eu/Eu* and Dy/Yb ratios in the zircons indicate that the studied magmatic rocks were formed under relatively reduced conditions and initially contained a rather low amount of magmatic water. A mineralogical–geochemical investigation allowed us to outline five main stages (prograde skarn, retrograde skarn, potassic alteration, propylitic (hydrosilicate) alteration and late low-temperature alteration) of mineral formation, each of them being characterized by a definite paragenetic mineral association. The major iron, gold and copper ores were formed at the stage of retrograde skarn and potassic alteration, while the formation of polymetallic ores proceeded at the stage of propylitic alteration. The obtained timing of the formation of retrograde skarn (156.3 Ma) and magmatic rocks of the Shakhtama complex, along with the direct geological observations, suggest their spatial–temporal and genetic relationship. The data obtained on the age of magmatic rocks and ore mineralization are interpreted as indicating the formation of the Kultuma deposit that proceeded at the final stages of collision. Results of the investigation of the isotope composition of S in sulfide minerals point to their substantial enrichment with the heavy sulfur isotope (δ34S from 6.6 to 16‰). The only exclusion with anomalous low δ34S values (from 1.4 to 3.7‰) is pyrrhotite from retrograde skarns of the Ochunogda region. These differences are, first of all, due to the composition of the host rocks. Results of the studies of C and O isotope composition allow us to conclude that one of the main sources of carbon was the host rocks of the Bystrinskaya formation, while the changes in the isotope composition of oxygen are mainly connected with decarbonization processes and the interactions of magmatic fluids, host rocks and meteoric waters. The fluids that are responsible for the formation of the mineral associations of retrograde skarns and the zones of potassic alteration at the Kultuma deposit were reduced, moderately hot (~360–440 °С) and high-pressure (estimated pressure is up to 2.4 kbar). The distinguishing features of the fluids in the zones of potassic alteration at the Ochunogda region are a lower concentration and lower estimated pressure values (~1.7 kbar). The propylitic alteration took place with the participation of reduced lower-temperature (~280–320 °C) and lower-pressure (1–1.2 kbar) fluids saturated with carbon dioxide, which were later on diluted with meteoric waters to become more water-rich and low-temperature (~245–260 °C). The studies showed that the main factors that affected the distribution and specificity of mineralization are magmatic, lithological and structural–tectonic ones. Results of the studies allow us to classify the Kultuma deposit as a Au–Cu–Fe–skarn deposit related to reduced intrusion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gan Duan ◽  
Rahul Ram ◽  
Yanlu Xing ◽  
Barbara Etschmann ◽  
Joël Brugger

AbstractThe dynamic evolutions of fluid-mineral systems driving large-scale geochemical transformations in the Earth’s crust remain poorly understood. We observed experimentally that successive sodic and potassic alterations of feldspar can occur via a single self-evolved, originally Na-only, hydrothermal fluid. At 600 °C, 2 kbar, sanidine ((K,Na)AlSi3O8) reacted rapidly with a NaCl fluid to form albite (NaAlSi3O8); over time, some of this albite was replaced by K-feldspar (KAlSi3O8), in contrast to predictions from equilibrium reaction modelling. Fluorine accelerated the process, resulting in near-complete back-replacement of albite within 1 day. These findings reveal that potassic alteration can be triggered by Na-rich fluids, indicating that pervasive sequential sodic and potassic alterations associated with mineralization in some of the world’s largest ore deposits may not necessarily reflect externally-driven changes in fluid alkali contents. Here, we show that these reactions are promoted at the micro-scale by a self-evolving, kinetically-driven process; such positive feedbacks between equilibrium and kinetic factors may be essential in driving pervasive mineral transformations.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 671
Author(s):  
Constanza Rivas-Romero ◽  
Martin Reich ◽  
Fernando Barra ◽  
Daniel Gregory ◽  
Sergio Pichott

Porphyry Cu-Mo deposits are among the world’s largest source of Cu, Mo, and Re, and are also an important source of other trace elements, such as Au and Ag. Despite the fact that chalcopyrite, bornite, and pyrite are the most common sulfides in this deposit type, their trace element content remains poorly constrained. In particular, little is known about minor and trace elements partitioning into Cu-(Fe) sulfides as a function of temperature and pH of the hydrothermal fluid. In this study, we report a comprehensive geochemical database of chalcopyrite, bornite, and pyrite in the super-giant Chuquicamata porphyry Cu-Mo deposit in northern Chile. The aim of our study, focused on the new Chuquicamata Underground mine, was to evaluate the trace element composition of each sulfide from the different hydrothermal alteration assemblages in the deposit. Our approach combines the electron microprobe analysis (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of sulfide minerals obtained from six representative drill cores that crosscut the chloritic (propylitic), background potassic, intense potassic, and quartz-sericite (phyllic) alteration zones. Microanalytical results show that chalcopyrite, bornite, and pyrite contain several trace elements, and the concentration varies significantly between hydrothermal alteration assemblages. Chalcopyrite, for example, is a host of Se (≤22,000 ppm), Pb (≤83.00 ppm), Sn (≤68.20 ppm), Ag (≤45.1 ppm), Bi (≤25.9 ppm), and In (≤22.8 ppm). Higher concentrations of Se, In, Pb, and Sn in chalcopyrite are related to the high temperature background potassic alteration, whereas lower concentrations of these elements are associated with the lower temperature alteration types: quartz-sericite and chloritic. Bornite, on the other hand, is only observed in the intense and background potassic alteration zones and is a significant host of Ag (≤752 ppm) and Bi (≤2960 ppm). Higher concentrations of Ag and Sn in bornite are associated with the intense potassic alteration, whereas lower concentrations of those two elements are observed in the background potassic alteration. Among all of the sulfide minerals analyzed, pyrite is the most significant host of trace elements, with significant concentrations of Co (≤1530 ppm), Ni (≤960 ppm), Cu (≤9700 ppm), and Ag (≤450 ppm). Co, Ni, Ag, and Cu concentration in pyrite vary with alteration: higher Ag and Cu concentrations are related to the high temperature background potassic alteration. The highest Co contents are associated with lower temperature alteration types (e.g., chloritic). These data indicate that the trace element concentration of chalcopyrite, bornite, and pyrite changed as a function of hydrothermal alteration is controlled by several factors, including temperature, pH, fO2, fS2, and the presence of co-crystallizing phases. Overall, our results provide new information on how trace element partitioning into sulfides relates to the main hydrothermal and mineralization events controlling the elemental budget at Chuquicamata. In particular, our data show that elemental ratios in chalcopyrite (e.g., Se/In) and, most importantly, pyrite (e.g., Ag/Co and Co/Cu) bear the potential for vectoring towards porphyry mineralization and higher Cu resources.


Author(s):  
Arifudin Idrus ◽  
Aji Syailendra Ubaidillah ◽  
I Wayan Warmada ◽  
Syafruddin Maula

Brambang is one of the porphyry copper-gold prospects/deposits situated along eastern Sunda arc. This study is aimed to understand geological framework, alteration geochemistry and ore fluid characteristics of the prospect. Fieldworks and various laboratory analyses were performed including petrography, ore microscopy, rock geochemistry, chlorite chemistry and fluid inclusion microthermometry. The prospect is composed of andesitic tuff and diorite which are intruded by tonalite porphyries. Tonalite porphyries are interpreted as ore mineralisation-bearing intrusion. Various hydrothermal alterations are identified including potassic, phyllic, propylitic, advanced argillic and argillic types. Ore mineralisation is characterized by magnetite and copper sulfides such as bornite and chalcopyrite. Potassic alteration is typified by secondary biotite, and associated with ore mineralisation. Mass balance calculation indicates SiO2, Fe2O3, K2O, Cu and Au are added during potassic alteration process. Ore forming fluid is dominated by magmatic fluid at high temperature (450-600ºC) and high salinity (60-70 wt. % NaCl eq.). Hydrothermal fluid was diluted by meteoric water incursion at low-moderate temperature of 150-400ºC and salinity of 0.5-7 wt. % NaCl eq.


2021 ◽  
Author(s):  
Subaru Tsuruoka ◽  
Thomas Monecke ◽  
T. James Reynolds

Abstract The Santa Rita porphyry Cu deposit in New Mexico, USA, is characterized by a stockwork of three vein types that differ in morphology, mineralogy, and associated alteration assemblages. Early quartz veins associated with potassic alteration are composed of recrystallized granular quartz grains that host ubiquitous hypersaline liquid and vapor-rich fluid inclusions. The early quartz likely formed at high (≳500°C) temperatures and lithostatic pressures. Hypogene Cu mineralization at Santa Rita is in sulfide veins that reopened or crosscut the early quartz veins. The sulfide veins are surrounded by alteration halos containing chlorite and K-feldspar. Rare quartz crystals are present in some of these chalcopyrite and pyrite veins. The cores of the quartz crystals contain hypersaline liquid and vapor-rich fluid inclusions, whereas the rims mostly contain hypersaline liquid inclusions. The quartz crystals are interpreted to have formed close to the ductile-brittle transition as a result of the pressure drop from lithostatic to hydrostatic conditions. Formation of the quartz crystals was postdated by the deposition of Cu sulfides. Grain boundaries between the quartz and the sulfide minerals are irregular in shape, with sulfide crosscutting growth zones in the quartz. The Cu sulfides are interpreted to have formed from intermediate-density fluids that form secondary fluid inclusion assemblages in all earlier-formed quartz types. Microthermometric investigations showed that these fluid inclusion assemblages homogenize at ~385° to 435°C by critical or near-critical behavior and have salinities of <10 wt % NaCl equiv. The precipitation of Cu sulfides occurred as a result of cooling of these fluids following their escape from the lithostatic into the hydrostatic realm. Retrograde quartz solubility caused the corrosion of earlier-formed quartz during Cu sulfide deposition. The youngest veins at Santa Rita are composed of quartz and pyrite. These veins are associated with intense sericite alteration that overprinted all earlier alteration assemblages. The late quartz hosts primary and secondary liquid-rich fluid inclusions, but no intermediate-density fluid inclusions were identified. This quartz vein type formed at temperatures <360°C and hydrostatic pressures. The paragenetic relationships show that hypogene Cu mineralization at Santa Rita postdated potassic alteration of the host rocks. The Cu mineralization was formed by cooling intermediate-density fluids with critical or near-critical densities as they escaped from lithostatic to hydrostatic conditions.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 174
Author(s):  
Amy K. Gilmer ◽  
R. Stephen J. Sparks ◽  
Dan N. Barfod ◽  
Emily R. Brugge ◽  
Ian J. Parkinson

The Don Manuel porphyry copper system, located in the Miocene–Pliocene metallogenic belt of central Chile, contains spatially zoned alteration styles common to other porphyry copper deposits including extensive potassic alteration, propylitic alteration, localized sericite-chlorite alteration and argillic alteration but lacks pervasive hydrolytic alteration typical of some deposits. It is one of the youngest porphyry copper deposits in the Andes. Timing of mineralization and the hydrothermal system at Don Manuel are consistent with emplacement of the associated intrusions (ca. 4 and 3.6 Ma). Two molybdenite samples yielded consistent ages of 3.412 ± 0.037 and 3.425 ± 0.037 Ma. 40Ar/39Ar ages on hydrothermal biotites (3.57 ± 0.02, 3.51 ± 0.02, 3.41 ± 0.01, and 3.37 ± 0.01 Ma) are associated with potassic alteration. These ages are younger than the youngest intrusion by ~300 k.y. recording the cooling of the system below 350 °C. Such a time gap can be explained by fluxing of hot magmatic fluids from deeper magmatic sources.


2021 ◽  
Vol 11 (2) ◽  
pp. 479
Author(s):  
Christos L. Stergiou ◽  
Vasilios Melfos ◽  
Panagiotis Voudouris ◽  
Paul G. Spry ◽  
Lambrini Papadopoulou ◽  
...  

The Vathi porphyry Cu-Au ± Mo mineralization is located in the Serbo-Macedonian metallogenic province of the Western Tethyan Metallogenic Belt. It is mainly hosted by a latite and is genetically associated with a quartz monzonite intrusion, which intruded the basement rocks of the Vertiskos Unit and the latite, 18 to 17 Ma ago. A phreatic breccia crosscuts the latite. The quartz monzonite was affected by potassic alteration, whereas the latite was subjected to local propylitic alteration. Both styles of alteration were subsequently overprinted by intense sericitic alteration. M-type and A-type veins are spatially associated with potassic alteration, whereas D-type veins are related to the sericitic alteration. Three ore assemblages are associated with the porphyry stage: (1) pyrite + chalcopyrite + bornite + molybdenite + magnetite associated with potassic alteration; (2) pyrite + chalcopyrite related to propylitic alteration; and (3) pyrite + chalcopyrite + native gold ± tetradymite associated with sericitic alteration. A fourth assemblage consisting of sphalerite + galena + arsenopyrite + pyrrhotite + pyrite ± stibnite ± tennantite is related to an epithermal overprint. Fluid inclusion data indicate that the A-type veins and related porphyry-style mineralization formed at 390–540 °C and pressures of up to 646 bars (<2.6 km depth) from boiling hydrothermal fluids. A later condensation of vapor-rich inclusions resulted in a moderately saline fluid (8.4–11.2 wt % NaCl equiv) at temperatures between 311 and 392 °C, which were related to sericitic alteration, D-type veins, and associated metallic mineralization. Subsequent dilution of the moderately saline fluid at lower temperatures (205–259 °C) produced a less saline (1.4–2.9 wt % NaCl equiv.) fluid, which is likely associated with the late epithermal overprint.


2020 ◽  
Vol 115 (8) ◽  
pp. 1619-1644
Author(s):  
Jorge Crespo ◽  
Martin Reich ◽  
Fernando Barra ◽  
Juan José Verdugo ◽  
Claudio Martínez ◽  
...  

Abstract Porphyry Cu-Mo deposits (PCDs) are the world’s major source of Cu, Mo, and Re and are also a significant source of Au and Ag. Here we focus on the world-class Río Blanco PCD in the Andes of central Chile, where Ag is a by-product of Cu mining. Statistical examination of an extensive multielemental inductively coupled plasma-mass spectrometry data set indicates compositional trends at the deposit scale, including Ag-Cu (r = 0.71) and Ag-In (r = 0.53) positive correlations, which relate to Cu-Fe sulfides and Cu sulfosalts in the deposit. Silver is primarily concentrated in Cu ores in the central core of the deposit, and significant variations in the Ag concentration are related to the different hydrothermal alteration types. The concentration of Ag is highest in the potassic core (avg 2.01 ppm) and decreases slightly in the gray-green sericite (phyllic) zone (avg 1.72 ppm); Ag is lowest in the outer propylitic alteration zone (avg 0.59 ppm). Drill core samples from major hydrothermal alteration zones were selected for in situ analysis of Ag and associated elements in sulfide and sulfosalt minerals. To ensure representativeness, sample selection considered the spatial distribution of the alteration types and ore paragenesis. Chalcopyrite is the most abundant Cu sulfide in Río Blanco, with Ag concentration that ranges from sub-parts per million levels to hundreds of parts per million. The highest concentration of Ag in chalcopyrite is associated with the high-temperature potassic alteration stage. Bornite is less abundant than chalcopyrite but has the highest Ag concentration of all studied sulfides, ranging from hundreds of parts per million up to ~1,000 ppm. The Ag concentration in bornite is higher in lower-temperature alteration assemblages (moderate gray-green sericite), opposite to the behavior of Ag in chalcopyrite. Pyrite has the lowest Ag content, although concentrations of other critical elements such as Co, Ni, and Au may be significant. The highest Ag concentrations, i.e., thousands of parts per million up to weight percent levels, were detected in late-stage Cu sulfosalts (enargite, tennantite, and tetrahedrite). The Ag content in these sulfosalts increases with increasing Sb concentrations, from the Sb-poor enargite to the Sb-rich tetrahedrite. The earliest Ag mineralization event is related to the potassic alteration stage represented by early biotite and transitional early biotite-type veinlets and where the predominant sulfides are chalcopyrite and bornite. Silver mineralization during this stage was predominantly controlled by crystallization of Cu-Fe sulfides. The second Ag mineralization event at Río Blanco is associated with the transitional Cu mineralization stage, which is represented by the gray-green sericite alteration (C-type veinlets). In this alteration type, Ag was partitioned preferentially into chalcopyrite, bornite, and to a lesser extent pyrite. The last Ag mineralization event is related to the late quartz-sericite alteration stage, characterized by D- and E-type veinlets with pyrite-chalcopyrite and enargite-tennantite-tetrahedrite. Our data indicate that Ag was associated with several Cu mineralization episodes at Río Blanco, with Ag concentration apparently controlled by cooling, changes in pH, fO2 and fS2 of the hydrothermal fluids, and the intensity of alteration. Overall, our results provide information on critical metal partitioning between sulfides, plus the distribution of critical element resources at the deposit scale. Knowledge of the mineralogical occurrence of critical metals in PCDs is necessary to better assess their resources and evaluate the potential for their recovery.


2020 ◽  
Author(s):  
Fei Zhang ◽  
Ben J. Williamson ◽  
Hannah S.R. Hughes ◽  
Gavyn Rollinson

&lt;p&gt;Porphyry magmatic systems emplaced within carbonate host rocks constitute a major source of the world&amp;#8217;s Cu, Mo, Pb, Zn and Au [1]. Mineralisation is generally either porphyry-style or endoskarn-style within, or porphyry-, exoskarn- or manto-style outside the porphyry intrusion(s) [1,2]. Genetic models for porphyry and skarn mineralisation are well established, however questions remain as to why endoskarn- rather than porphyry-style mineralisation predominates within certain systems and regions. This is the case in Japan, for example, where there are very few signs of porphyry mineralisation despite generally favourable geological conditions, but there are large endoskarn and exoskarn deposits [3]. Recent studies show that magmas can assimilate large volumes of crustal carbonates, potentially providing a significant amount of CO&lt;sub&gt;2&lt;/sub&gt; to late and post-magmatic hydrothermal fluids [4]. High levels of CO&lt;sub&gt;2&lt;/sub&gt; in magmatic-hydrothermal systems may favour endoskarn formation and affect metal fractionation and solubility of ore minerals [5]. In this contribution, we test the hypothesis that endoskarn alteration may eliminate porphyry-style Cu mineralisation and mobilise Cu into other parts of the pluton and surrounding carbonate wall-rocks (exoskarns). &amp;#160;&lt;/p&gt;&lt;p&gt;To address this hypothesis, the Daye ore district in the Middle-Lower Yangtze River metallogenic belt was selected for study as it hosts porphyry-, exoskarn- and endoskarn-styles of mineralisation [6]. The porphyry and skarn deposits lie within Late Mesozoic intrusions or along their contacts with Late Triassic carbonates. From among the many porphyry-related systems, the Tonglushan Fe-Cu-(Au) endoskarn-bearing system was selected for detailed field-, light microscopy-, cathodoluminescence-, SEM- and QEMSCAN&amp;#174;-based genetic studies. The current study is mainly based on a comparison of samples from a single core through altered granite, endoskarn and exoskarn. From preliminary data for the Tonglushan system, the granites distal to the endoskarn were affected by Na-Ca alteration (replacement of intermediate composition plagioclase with albite, calcite and chlorite, and hornblende with calcite and chlorite), potassic alteration (replacement of plagioclase with K-feldspar), and later quartz-calcite veining. The endoskarn, which shows relict minerals and textures from the granite, underwent: 1) sericitic alteration, 2) prograde endoskarn formation, 3) retrograde endoskarn formation, 4) potassic alteration and 5) late carbonate veining stage. The textural relationships of oxide minerals in exoskarn and endoskarn indicate that magnetite and hematite likely formed during Stage 3, whereas Cu-(Au) mineralisation in the exoskarn is considered to be genetically associated with the potassic alteration phase, with precipitation of sulphides caused by acid neutralisation within the carbonates.&lt;/p&gt;&lt;p&gt;References:&lt;/p&gt;&lt;p&gt;[1] Sillitoe R (2010) Econ Geol 105:3-41&lt;/p&gt;&lt;p&gt;[2] Meinert L D et al. (2005) Econ Geol 100:299-336&lt;/p&gt;&lt;p&gt;[3] Ishihara S (1980) Mining Geol 30:59-62&lt;/p&gt;&lt;p&gt;[4] Carter L B and Dasgupta R (2016) Geochem Geophys Geosyst 17:3893-3916&lt;/p&gt;&lt;p&gt;[5] Lowenstern J B (2001) Mineral Deposita 36:490-502&lt;/p&gt;&lt;p&gt;[6] Zhai Y S et al. (1996) Ore Geol Rev 11:229-248&lt;/p&gt;


2020 ◽  
Author(s):  
Jonathan Hamisi ◽  
Iain Pitcairn ◽  
Andrew Tomkins ◽  
Joel Brugger ◽  
Steve Micklethwaite

&lt;p&gt;IOCG deposits are economically important providing amongst other resources, around 12% of global copper production and 47% of Australian copper production. A number of different genetic models have been proposed for the formation of IOCG deposits including ore systems for which fluids and metals are sourced from igneous bodies (Hauck, 1990; Groves and Vielreicher, 2001; Pollard, 2001) and others where mineralising fluids are non-magmatic. There are two main non-magmatic models. The first suggests that the key heat source is igneous and contact metamorphism drives thermal convection and development of metal rich brines with possible input of metals from the igneous bodies themselves (Haynes et al., 1995; Barton and Johnson, 1996, 2000; Haynes, 2000). The second non-magmatic model suggests that hypersaline brines are produced by metamorphic reactions at depth and the resulting metamorphic brines become metal rich through wall rock interaction as they migrate and possibly mixing with other aqueous phase to form a deposit (Williams, 1994; de Jong et al., 1997; Hitzman, 2000).&lt;/p&gt;&lt;p&gt;A number of alteration type occurrs in IOCG systems including albitization, scapolitization, &amp;#8220;red-rock&amp;#8221; alteration (calc-sodic), carbonate alteration, potassic alteration, chlorite alteration as described by Barton (2013). Yet the fundamental relationship between the alteration, the mobility of chemical elements and the formation of the deposits is not well known. &lt;br&gt;We assess metal mobility during different styles of alteration using a mass balance approach comparing suites of well characterised altered rocks of different types to their least altered parent rocks. We aim to identify which styles of alteration can be shown to mobilise metals and therefore constrain potential sources of metals for IOCG ore deposits in metamorphic terranes, with a focus on Olympic and Mt Isa Provinces in Australia.&lt;/p&gt;&lt;p&gt;Preliminary results of mass balance calculations from the Olympic Province show that potential altered source rocks are significantly depleted in Cu relative to their least altered protoliths. The median Cu and Au mass variation values of rocks albitised at variable degrees (Na alteration) are respectively -87% (range -93% to +258%, n=7) and -27% (range -76% to +69%, n = 7) Similarly rocks with variable potassic alteration (K) have a median Cu mass variation of -52% (range -52% to +186%, n=6) and rocks affected by calc-sodic alteration have Au mass change median of -36% (range -36% to +1656%, n = 10). Mass change in the altered rocks is highly variable with both enrichment and depletion occurring within the same alteration styles. Samples affected by carbonate and potassic alteration are enriched in Au, and calc-sodic and carbonate altered rocks are enriched in Cu. Availability of the particular element in the source rock and lithology play presumably a role in these changes of behaviour in element mobility.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document