Southern hemisphere tropical climate over the past 145ka: Results of the Lake Malawi Scientific Drilling Project, East Africa

2011 ◽  
Vol 303 (1-4) ◽  
pp. 1-2 ◽  
Author(s):  
Christopher A. Scholz ◽  
Andrew S. Cohen ◽  
Thomas C. Johnson
2006 ◽  
Vol 2 ◽  
pp. 17-19 ◽  
Author(s):  
C. A. Scholz ◽  
A. S. Cohen ◽  
T. C. Johnson ◽  
J. W. King ◽  
K. Moran

No abstract available. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.2.04.2006" target="_blank">10.2204/iodp.sd.2.04.2006</a>


PAGES news ◽  
2007 ◽  
Vol 15 (2) ◽  
pp. 7-8
Author(s):  
Chritopher A Scholz

Author(s):  
Thomas C. Johnson

The people of East Africa are particularly vulnerable to the whims of their regional climate. A rapidly growing population depends heavily on rain-fed agriculture, and when the rains deviate from normal, creating severe drought or flooding, the toll can be devastating in terms of starvation, disease, and political instability. Humanity depends upon climate models to ascertain how the climate will change in the coming decades, in response to anthropogenic forcing, to better comprehend what lies in store for East African society, and how they might best cope with the circumstances. These climate models are tested for their accuracy by comparing their output of past climate conditions against what we know of how the climate has evolved. East African climate has undergone dramatic change, as indicated by lake shorelines exposed several tens of meters above present lake levels, by seismic reflection profiles in lake basins displaying submerged and buried nearshore sedimentary sequences, and by the fossil and chemical records preserved in lake sediments, which indicate dramatic past change in lake water chemistry and biota, both within the lakes and in their catchments, in response to shifting patterns of rainfall and temperature. This history, on timescales from decades to millennia, and the mechanisms that account for the observed past climate variation, are summarized in this article. The focus of this article is on paleoclimate data and not on climate models, which are discussed thoroughly in an accompanying article in this volume. Very briefly, regional climate variability over the past few centuries has been attributed to shifting patterns of sea surface temperature in the Indian Ocean. The Last Glacial Maximum (LGM) was an arid period throughout most of East Africa, with the exception of the coastal terrain), and the region did not experience much wetter conditions until around 15,000 years ago (15 ka). A brief return to drier times occurred during the Younger Dryas (YD) (12.9–11.7 ka), and then a wet African Humid Period until about 5 ka, after which the region, at least north of Lake Malawi at ~10º S latitude, became relatively dry again. The penultimate ice age was much drier than the LGM, and such megadroughts occurred several times over the previous 1.3 million years. While the African continent north of the equator experienced, on average, progressively drier conditions over the past few million years, unusually wet periods occurred around 2.7–2.5, 1.9–1.7, and 1.1–0.7 million years ago. By contrast, the Lake Malawi basin at ~10º—14º S latitude has undergone a trend of progressively wetter conditions superimposed on a glacial–dry, interglacial–wet cycle since the Mid-Pleistocene Transition at ~900 ka.


Radiocarbon ◽  
2017 ◽  
Vol 59 (2) ◽  
pp. 383-394 ◽  
Author(s):  
Hiroyuki Kitagawa ◽  
Mordechai Stein ◽  
Steven L Goldstein ◽  
Toshio Nakamura ◽  
Boaz Lazar ◽  
...  

AbstractThis study establishes the chronological framework of the sedimentary sequence deposited Dead Sea, ICDP 5017-1, Radiocarbon chronology during the past 50 ka at the deepest part of the Dead Sea (the ICDP 5017-1 site), which was recovered by the Dead Sea Deep Drilling Project (DSDDP) under the auspices of the International Continental Scientific Drilling Program (ICDP). The age-depth model is constructed using 3814C dates of terrestrial plant remains in a composite 150-m-long profile, generated by anchoring 32 marker layers identified in five cores. The sedimentary records at the ICDP 5017-1 site fills gaps in those obtained from the exposed sections at the high margins of the lake, particularly in times of lake-level retreat, and allows for a high-resolution comparison between the lake’s margins and deepest floor.


1986 ◽  
Author(s):  
J.H. Sass ◽  
S.S. Priest ◽  
L.C. Robison ◽  
J.D. Hendricks

2021 ◽  
pp. 146960532199394
Author(s):  
Venla Oikkonen

This article explores the conceptual and cultural implications of using pathogen ancient DNA (aDNA) collected in archaeological contexts to understand the past. More specifically, it examines ancient pathogen genomics as a way of conceptualizing multispecies entanglements. The analysis focuses on the 2018 sequencing of Borrelia recurrentis bacteria retrieved from a medieval graveyard in Oslo, Norway. B. recurrentis is associated with louse-borne relapsing fever (LBRF), known to have killed several million people in Europe during the past millennium, and it is still encountered in parts of East Africa. The article demonstrates that while aDNA research often foregrounds multispecies entanglements, its epistemic tools cannot easily address the ontological blurriness of pathogens and their embeddedness in vibrant material processes. The article draws on feminist posthumanities work on microbes and materiality to highlight conceptual openings that a theorization of ancient pathogens could engender.


Sign in / Sign up

Export Citation Format

Share Document