lake level
Recently Published Documents


TOTAL DOCUMENTS

994
(FIVE YEARS 70)

H-INDEX

67
(FIVE YEARS 0)

2021 ◽  
Vol 17 (6) ◽  
pp. 2653-2677
Author(s):  
Yoav Ben Dor ◽  
Francesco Marra ◽  
Moshe Armon ◽  
Yehouda Enzel ◽  
Achim Brauer ◽  
...  

Abstract. Annual and decadal-scale hydroclimatic variability describes key characteristics that are embedded into climate in situ and is of prime importance in subtropical regions. The study of hydroclimatic variability is therefore crucial to understand its manifestation and implications for climate derivatives such as hydrological phenomena and water availability. However, the study of this variability from modern records is limited due to their relatively short span, whereas model simulations relying on modern dynamics could misrepresent some of its aspects. Here we study annual to decadal hydroclimatic variability in the Levant using two sedimentary sections covering ∼ 700 years each, from the depocenter of the Dead Sea, which has been continuously recording environmental conditions since the Pleistocene. We focus on two series of annually deposited laminated intervals (i.e., varves) that represent two episodes of opposing mean climates, deposited during MIS2 lake-level rise and fall at ∼ 27 and 18 ka, respectively. These two series comprise alternations of authigenic aragonite that precipitated during summer and flood-borne detrital laminae deposited by winter floods. Within this record, aragonite laminae form a proxy of annual inflow and the extent of epilimnion dilution, whereas detrital laminae are comprised of sub-laminae deposited by individual flooding events. The two series depict distinct characteristics with increased mean and variance of annual inflow and flood frequency during “wetter”, with respect to the relatively “dryer”, conditions, reflected by opposite lake-level changes. In addition, decades of intense flood frequency (clusters) are identified, reflecting the in situ impact of shifting centennial-scale climate regimes, which are particularly pronounced during wetter conditions. The combined application of multiple time series analyses suggests that the studied episodes are characterized by weak and non-significant cyclical components of sub-decadal frequencies. The interpretation of these observations using modern synoptic-scale hydroclimatology suggests that Pleistocene climate changes resulted in shifts in the dominance of the key synoptic systems that govern rainfall, annual inflow and flood frequency in the eastern Mediterranean Sea over centennial timescales.



2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Liang ◽  
Cheng Quan ◽  
Yongxiang Li ◽  
Weiguo Liu ◽  
Zhonghui Liu

Knowledge of paleolake evolution is highly important for understanding the past hydroclimate regime on the Tibetan Plateau and associated forcing mechanisms. However, the hydrological history of paleolakes on the central plateau, the core region of the plateau, remains largely inconclusive. Here we present new biomarker records from lacustrine deposits of the Lunpori section in the Lunpola Basin to reconstruct detailed lake-level fluctuations during the mid-Miocene. A set of n-alkane indexes, including the proportion of aquatic macrophytes (Paq), average chain length and carbon preference index as well as the content of n-alkanes, vary substantially and consistently throughout the studied interval. Our results altogether show relatively low lake level at ∼16.3–15.5 Ma and high lake level before and after the interval, which is in line with the lithological observations in the section. Further comparison with existing regional and global temperature records suggests that lake level fluctuations can be largely linked to global climatic conditions during the mid-Miocene, with lake expansion during relatively warm periods and vice versa. Therefore, we infer that global climatic changes might have controlled the lake-level fluctuations in this region during the mid-Miocene, whereas the tectonic uplift likely played a subordinate role on this timescale.





2021 ◽  
Vol 38 ◽  
pp. 100948
Author(s):  
Laura K. Neary ◽  
Casey R. Remmer ◽  
Jadine Krist ◽  
Brent B. Wolfe ◽  
Roland I. Hall


Boreas ◽  
2021 ◽  
Author(s):  
Martin Theuerkauf ◽  
Theresa Blume ◽  
Achim Brauer ◽  
Nadine Dräger ◽  
Peter Feldens ◽  
...  


2021 ◽  
Author(s):  
◽  
Deborah Maxwell

<p>Lake Taupo is the effective source of the Waikato River. The Waikato Power Scheme relies on the outflow from the lake for moderated flows throughout the year. As the lake is maintained between a 1.4m operating range, it is the inflows to the lake that determine the amount of water available to the scheme for electricity generation. These inflows have not been modelled in any detail prior to this dissertation. This dissertation aims to develop a predictive rainfall-runoff model that can provide accurate and reliable inflow and lake level forecasts for the Lake Taupo catchment. Model formulation is guided by a fundamental understanding of catchment hydrologic principles and an in-depth assessment of catchment hydrologic behaviour. The model is a semi-distributed physically-consistent conceptual model which aims to provide a parsimonious representation of different storages and flow pathways through a catchment. It has three linear sub-surface stores. Drainage to these stores is related to the size of the saturation zone, utilising the concept of a variable source area. This model is used to simulate inflows from gauged unregulated sub-catchments. It is also used to estimate the inflow from ungauged areas through regionalisation. For regulated sub-catchments, the model is modified to incorporate available data and information relating to the relevant scheme‟s operation, resource consent conditions and other physical and legislative constraints. The output from such models is subject to considerable uncertainty due to simplifications in the model structure, estimated parameter values and imperfect driving data. For robust decision making, it is important this uncertainty is reduced to within acceptable levels. In this study, a constrained Ensemble Kalman Filter (EnKF) is applied to the four unregulated gauged catchments to deal with model structure and data uncertainties. Used in conjunction with Monte Carlo simulations, all three sources of uncertainty are addressed. Simple mass and flux constraints are applied to the four (soil storage, baseflow, interflow and fastflow) model states. Without these constraints states can be adjusted beyond what is physically possible, compromising the integrity of model output. It is demonstrated that the application of a constrained EnKF improves the accuracy and reliability of model output.Due to the complexity of the Tongariro Power Scheme (TPS) and the limited data available to model it, the conceptual model is not suitable. Rather, a statistical probability analysis is used to estimate the discharge from this scheme given the month of the year, day of the week and hour of the day. Model output is combined and converted into a corresponding change in lake level. The model is evaluated over a wide range of hydrological and meteorological conditions. An in-depth critical evaluation is undertaken on eight events chosen a priori as representation of both extreme and „usual‟ conditions. The model provides reasonable predictions of lake level given the uncertainty with the TPS, complexity of the catchment and data/information constraints. The model performs particularly well in „normal‟ and dry conditions but also does a good job during rainfall events in light of errors associated with driving data. However, for real-time operational use the integration of the model with meteorological forecasts is required. Model recalibration would be required due to the issue of moving from point estimation to areal rainfall data. Once this is achieved, this operational model would allow robust decision-making and efficient management of the water resource for the Waikato Power Scheme. Although there is room for improvement, there is considerable scope for extending the application of the constrained EnKF and techniques for incorporating regulation to other catchments both in New Zealand and internationally.</p>



2021 ◽  
Author(s):  
◽  
Deborah Maxwell

<p>Lake Taupo is the effective source of the Waikato River. The Waikato Power Scheme relies on the outflow from the lake for moderated flows throughout the year. As the lake is maintained between a 1.4m operating range, it is the inflows to the lake that determine the amount of water available to the scheme for electricity generation. These inflows have not been modelled in any detail prior to this dissertation. This dissertation aims to develop a predictive rainfall-runoff model that can provide accurate and reliable inflow and lake level forecasts for the Lake Taupo catchment. Model formulation is guided by a fundamental understanding of catchment hydrologic principles and an in-depth assessment of catchment hydrologic behaviour. The model is a semi-distributed physically-consistent conceptual model which aims to provide a parsimonious representation of different storages and flow pathways through a catchment. It has three linear sub-surface stores. Drainage to these stores is related to the size of the saturation zone, utilising the concept of a variable source area. This model is used to simulate inflows from gauged unregulated sub-catchments. It is also used to estimate the inflow from ungauged areas through regionalisation. For regulated sub-catchments, the model is modified to incorporate available data and information relating to the relevant scheme‟s operation, resource consent conditions and other physical and legislative constraints. The output from such models is subject to considerable uncertainty due to simplifications in the model structure, estimated parameter values and imperfect driving data. For robust decision making, it is important this uncertainty is reduced to within acceptable levels. In this study, a constrained Ensemble Kalman Filter (EnKF) is applied to the four unregulated gauged catchments to deal with model structure and data uncertainties. Used in conjunction with Monte Carlo simulations, all three sources of uncertainty are addressed. Simple mass and flux constraints are applied to the four (soil storage, baseflow, interflow and fastflow) model states. Without these constraints states can be adjusted beyond what is physically possible, compromising the integrity of model output. It is demonstrated that the application of a constrained EnKF improves the accuracy and reliability of model output.Due to the complexity of the Tongariro Power Scheme (TPS) and the limited data available to model it, the conceptual model is not suitable. Rather, a statistical probability analysis is used to estimate the discharge from this scheme given the month of the year, day of the week and hour of the day. Model output is combined and converted into a corresponding change in lake level. The model is evaluated over a wide range of hydrological and meteorological conditions. An in-depth critical evaluation is undertaken on eight events chosen a priori as representation of both extreme and „usual‟ conditions. The model provides reasonable predictions of lake level given the uncertainty with the TPS, complexity of the catchment and data/information constraints. The model performs particularly well in „normal‟ and dry conditions but also does a good job during rainfall events in light of errors associated with driving data. However, for real-time operational use the integration of the model with meteorological forecasts is required. Model recalibration would be required due to the issue of moving from point estimation to areal rainfall data. Once this is achieved, this operational model would allow robust decision-making and efficient management of the water resource for the Waikato Power Scheme. Although there is room for improvement, there is considerable scope for extending the application of the constrained EnKF and techniques for incorporating regulation to other catchments both in New Zealand and internationally.</p>



2021 ◽  
Author(s):  
I.A. Sutorikhin ◽  
S.Yu. Samoilova

The results of a comprehensive automated monitoring for the hydrological and hydrobiological state of a freshwater Lake Krasilovskoe, conducted since 2013 are given. The experimental dashboard is considered, including the atmospheric-soil measuring complex (ASMC), developed and created in the IMCES SB RAS, Tomsk. An analysis of the dynamics of the lake level during years with contrasting hydrometeorological conditions was performed, which made it possible to identify the main factors that determine the level mode in the spring. In the hydrobiological terms, the dynamics of phytoplankton concentration at different depths in different seasons of the year were investigated. The results of processing Sentinel-1, 2 satellite data and data of natural observations on the distribution of chlorophyll “A” in the surface layer of water sections of the lake water area are discussed.



2021 ◽  
pp. 103706
Author(s):  
Meng Wang ◽  
Mingsong Li ◽  
David B. Kemp ◽  
Slah Boulila ◽  
James G. Ogg


Sign in / Sign up

Export Citation Format

Share Document