Wavelet energy feature based source camera identification for ear biometric images

2020 ◽  
Vol 130 ◽  
pp. 139-147 ◽  
Author(s):  
Debbrota Paul Chowdhury ◽  
Sambit Bakshi ◽  
Pankaj Kumar Sa ◽  
Banshidhar Majhi
2011 ◽  
Vol 3 (4) ◽  
pp. 1-15
Author(s):  
Yongjian Hu ◽  
Chang-Tsun Li ◽  
Changhui Zhou ◽  
Xufeng Lin

Statistical image features play an important role in forensic identification. Current source camera identification schemes select image features mainly based on classification accuracy and computational efficiency. For forensic investigation purposes; however, these selection criteria are not enough. Consider most real-world photos may have undergone common image processing due to various reasons, source camera classifiers must have the capability to deal with those processed photos. In this work, the authors first build a sample camera classifier using a combination of popular image features, and then reveal its deficiency. Based on the experiments, suggestions for the design of robust camera classifiers are given.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhang Xu ◽  
Darong Huang ◽  
Tang Min ◽  
Yunhui Ou

To solve the problem that the bearing fault of variable working conditions is challenging to identify and classify in the industrial field, this paper proposes a new method based on optimization of multidimension fault energy characteristics and integrates with an improved least-squares support vector machine (LSSVM). First, because the traditional wavelet energy feature is difficult to effectively reflect the characteristics of rolling bearing under different working conditions, based on analyzing the wavelet energy feature extraction in detail, a collaborative method of multidimension fault energy feature extraction combined with the method of Transfer Component Analysis (TCA) is constructed, which improves the discrimination between the different features and the compactness between the same features of rolling bearing faults. Then, for solving the problem of the local optimal of particle swarm optimization (PSO) in fault diagnosis and recognition of rolling bearing, an improved LSSVM based on particle swarm optimization and wavelet mutation optimization is established to realize the collaborative optimization and adjustment of LSSVM dynamic parameters. Based on the improved LSSVM and optimization of multidimensional energy characteristics, a new method for fault diagnosis of rolling bearing is designed. Finally, the simulation and analysis of the proposed algorithm are verified by the experimental data of different working conditions. The experimental results show that this method can effectively extract the multidimensional fault characteristics under variable working conditions and has a high fault recognition rate.


Sign in / Sign up

Export Citation Format

Share Document