statistical feature
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 67)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Turker Tuncer ◽  
Sengul Dogan ◽  
Abdulhamit Subasi

AbstractElectroencephalography (EEG) signals collected from human brains have generally been used to diagnose diseases. Moreover, EEG signals can be used in several areas such as emotion recognition, driving fatigue detection. This work presents a new emotion recognition model by using EEG signals. The primary aim of this model is to present a highly accurate emotion recognition framework by using both a hand-crafted feature generation and a deep classifier. The presented framework uses a multilevel fused feature generation network. This network has three primary phases, which are tunable Q-factor wavelet transform (TQWT), statistical feature generation, and nonlinear textural feature generation phases. TQWT is applied to the EEG data for decomposing signals into different sub-bands and create a multilevel feature generation network. In the nonlinear feature generation, an S-box of the LED block cipher is utilized to create a pattern, which is named as Led-Pattern. Moreover, statistical feature extraction is processed using the widely used statistical moments. The proposed LED pattern and statistical feature extraction functions are applied to 18 TQWT sub-bands and an original EEG signal. Therefore, the proposed hand-crafted learning model is named LEDPatNet19. To select the most informative features, ReliefF and iterative Chi2 (RFIChi2) feature selector is deployed. The proposed model has been developed on the two EEG emotion datasets, which are GAMEEMO and DREAMER datasets. Our proposed hand-crafted learning network achieved 94.58%, 92.86%, and 94.44% classification accuracies for arousal, dominance, and valance cases of the DREAMER dataset. Furthermore, the best classification accuracy of the proposed model for the GAMEEMO dataset is equal to 99.29%. These results clearly illustrate the success of the proposed LEDPatNet19.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1914
Author(s):  
Mehmet Ali Kobat ◽  
Ozkan Karaca ◽  
Prabal Datta Barua ◽  
Sengul Dogan

Background and objective: Arrhythmia is a widely seen cardiologic ailment worldwide, and is diagnosed using electrocardiogram (ECG) signals. The ECG signals can be translated manually by human experts, but can also be scheduled to be carried out automatically by some agents. To easily diagnose arrhythmia, an intelligent assistant can be used. Machine learning-based automatic arrhythmia detection models have been proposed to create an intelligent assistant. Materials and Methods: In this work, we have used an ECG dataset. This dataset contains 1000 ECG signals with 17 categories. A new hand-modeled learning network is developed on this dataset, and this model uses a 3D shape (prismatoid) to create textural features. Moreover, a tunable Q wavelet transform with low oscillatory parameters and a statistical feature extractor has been applied to extract features at both low and high levels. The suggested prismatoid pattern and statistical feature extractor create features from 53 sub-bands. A neighborhood component analysis has been used to choose the most discriminative features. Two classifiers, k nearest neighbor (kNN) and support vector machine (SVM), were used to classify the selected top features with 10-fold cross-validation. Results: The calculated best accuracy rate of the proposed model is equal to 97.30% using the SVM classifier. Conclusion: The computed results clearly indicate the success of the proposed prismatoid pattern-based model.


Author(s):  
Wen-Bin Lin ◽  
Tai-Hung Lai ◽  
Ko-Chin Chang

AbstractPixel-value differencing (PVD) steganography is a popular spatial domain technology. Several PVD-based studies have proposed extended PVD steganography methods. The majority of these studies have verified their security against the regular-singular (RS) analysis. However, RS analysis is aimed at the feature of the least significant bit substitution method, which is relatively less significant for PVD steganography. The pixel difference histogram (PDH) is generally utilized to attack PVD steganography. If the embedding capacity is high, then the features on the PDH are evident; otherwise, the features are less obvious. In this paper, we propose a statistical feature-based steganalysis technique for the original PVD steganography. Experimental results demonstrate that, compared with existing steganalysis technique with weighted stego-image (WS) method, the proposed method effectively detects PVD steganography at low embedding ratios, such that there is no need of using the original embedding parameters. Furthermore, the accuracy and precision of the method are better than those of existing PVD steganalysis techniques. Therefore, the proposed method contributes to the security analysis of the original PVD steganography as an alternative to the commonly used RS, PDH and WS attack techniques.


IoT ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 449-475
Author(s):  
George D. O’Mahony ◽  
Kevin G. McCarthy ◽  
Philip J. Harris ◽  
Colin C. Murphy

Classifying fluctuating operating wireless environments can be crucial for successfully delivering authentic and confidential packets and for identifying legitimate signals. This study utilizes raw in-phase (I) and quadrature-phase (Q) samples, exclusively, to develop a low-order statistical feature set for wireless signal classification. Edge devices making decentralized decisions from I/Q sample analysis is beneficial. Implementing appropriate security and transmitting mechanisms, reducing retransmissions and increasing energy efficiency are examples. Wireless sensor networks (WSNs) and their Internet of Things (IoT) utilization emphasize the significance of this time series classification problem. Here, I/Q samples of typical WSN and industrial, scientific and medical band transmissions are collected in a live operating environment. Analog Pluto software-defined radios and Raspberry Pi devices are utilized to achieve a low-cost yet high-performance testbed. Features are extracted from Matlab-based statistical analysis of the I/Q samples across time, frequency (fast Fourier transform) and space (probability density function). Noise, ZigBee, continuous wave jamming, WiFi and Bluetooth signal data are examined. Supervised machine learning approaches, including support vector machines, Random Forest, XGBoost, k nearest neighbors and a deep neural network (DNN), evaluate the developed feature set. The optimal approach is determined as an XGBoost/SVM classifier. This classifier achieves similar accuracy and generalization results, on unseen data, to the DNN, but for a fraction of time and computation requirements. Compared to existing approaches, this study’s principal contribution is the developed low-order feature set that achieves signal classification without prior network knowledge or channel assumptions and is validated in a real-world wireless operating environment. The feature set can extend the development of resource-constrained edge devices as it is widely deployable due to only requiring received I/Q samples and these features are warranted as IoT devices become widely used in various modern applications.


Sign in / Sign up

Export Citation Format

Share Document