adaptive fusion
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 100)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Ruochen Liu ◽  
Han Wang ◽  
Jinwu Zhang ◽  
Shuangshuang Gu ◽  
Jianzhong Sun

Electrostatic monitoring is a unique and rapid developing technique applied in the prognostics and health management of the tribological system based on electrostatic charging and sensing phenomenon. It has considerable advantages in condition monitoring of tribo-contacts with high sensitivity and resolution. Unfortunately, the monitoring result can be affected due to the switch of operating conditions that reduces its accuracy. This paper presents a dynamic adaptive fusion approach, moving window local outlier factor based on electrostatic features to overcome the influence. Life cycle experiments of rolling bearings and railcar gearbox were carried out on an electrostatic monitoring platform. The MWLOF method was used to extract and analyze the experimental data, combined with the Pauta criterion to judge wear faults quantitatively, and compare with other feature extraction results. It is verified that the proposed method can overcome the influence of changes in working conditions on the monitoring results, improve the monitoring sensitivity, and provide an accurate reference for friction and wear faults.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 59
Author(s):  
Heqing Huang ◽  
Tongbin Huang ◽  
Zhen Li ◽  
Shilei Lyu ◽  
Tao Hong

Citrus fruit detection can provide technical support for fine management and yield determination of citrus orchards. Accurate detection of citrus fruits in mountain orchards is challenging because of leaf occlusion and citrus fruit mutual occlusion of different fruits. This paper presents a citrus detection task that combines UAV data collection, AI embedded device, and target detection algorithm. The system used a small unmanned aerial vehicle equipped with a camera to take full-scale pictures of citrus trees; at the same time, we extended the state-of-the-art model target detection algorithm, added the attention mechanism and adaptive fusion feature method, improved the model’s performance; to facilitate the deployment of the model, we used the pruning method to reduce the amount of model calculation and parameters. The improved target detection algorithm is ported to the edge computing end to detect the data collected by the unmanned aerial vehicle. The experiment was performed on the self-made citrus dataset, the detection accuracy was 93.32%, and the processing speed at the edge computing device was 180 ms/frame. This method is suitable for citrus detection tasks in the mountainous orchard environment, and it can help fruit growers to estimate their yield.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chenxi Wang ◽  
Huizhen Zhang ◽  
Shuilin Yao ◽  
Wenlong Yu ◽  
Ming Ye

Passenger flow forecasting plays an important role in urban rail transit (URT) management. However, complex spatial and temporal correlations make this task extremely challenging. Previous work has been done by capturing spatiotemporal correlations of historical data. However, the spatiotemporal relationship between stations not only is limited to geospatial adjacency, but also lacks different perspectives of station correlation analysis. To fully capture the spatiotemporal correlations, we propose a deep learning model based on graph convolutional neural networks called MDGCN. Firstly, we identify the heterogeneity of stations under two spaces by the Multi-graph convolutional layer. Secondly, we designed the Diff-graph convolutional layer to identify the changing trend of heterogeneous features and used the attention mechanism unit with the LSTM unit to achieve adaptive fusion of multiple features and modeling of temporal correlation. We evaluate this model on real datasets. Compared to the best baselines, the root-mean-square errors of MDGCN are improved by 1%–15% for different prediction intervals.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhou Fang ◽  
Qilin Wu ◽  
Darong Huang ◽  
Dashuai Guan

Dark channel prior (DCP) has been widely used in single image defogging because of its simple implementation and satisfactory performance. This paper addresses the shortcomings of the DCP-based defogging algorithm and proposes an optimized method by using an adaptive fusion mechanism. This proposed method makes full use of the smoothing and “squeezing” characteristics of the Logistic Function to obtain more reasonable dark channels avoiding further refining the transmission map. In addition, a maximum filtering on dark channels is taken to improve the accuracy of dark channels around the object boundaries and the overall brightness of the defogged clear images. Meanwhile, the location information and brightness information of fog image are weighed to obtain more accurate atmosphere light. Quantitative and qualitative comparisons show that the proposed method outperforms state-of-the-art image defogging algorithms.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Peng Chen ◽  
Tianjiazhi Bao ◽  
Xiaosheng Yu ◽  
Zhongtu Liu

Abstract Background Drug repositioning has caught the attention of scholars at home and abroad due to its effective reduction of the development cost and time of new drugs. However, existing drug repositioning methods that are based on computational analysis are limited by sparse data and classic fusion methods; thus, we use autoencoders and adaptive fusion methods to calculate drug repositioning. Results In this study, a drug repositioning algorithm based on a deep autoencoder and adaptive fusion was proposed to mitigate the problems of decreased precision and low-efficiency multisource data fusion caused by data sparseness. Specifically, a drug is repositioned by fusing drug-disease associations, drug target proteins, drug chemical structures and drug side effects. First, drug feature data integrated by drug target proteins and chemical structures were processed with dimension reduction via a deep autoencoder to characterize feature representations more densely and abstractly. Then, disease similarity was computed using drug-disease association data, while drug similarity was calculated with drug feature and drug-side effect data. Predictions of drug-disease associations were also calculated using a top-k neighbor method that is commonly used in predictive drug repositioning studies. Finally, a predicted matrix for drug-disease associations was acquired after fusing a wide variety of data via adaptive fusion. Based on experimental results, the proposed algorithm achieves a higher precision and recall rate than the DRCFFS, SLAMS and BADR algorithms with the same dataset. Conclusion The proposed algorithm contributes to investigating the novel uses of drugs, as shown in a case study of Alzheimer's disease. Therefore, the proposed algorithm can provide an auxiliary effect for clinical trials of drug repositioning.


Author(s):  
Hou Zhiqiang ◽  
Guo Fan ◽  
Guo Jingjing ◽  
Zhang Chengyu ◽  
Ma Sugang

2021 ◽  
Vol 30 (04) ◽  
Author(s):  
Sugang Ma ◽  
Lei Zhang ◽  
Zhiqiang Hou ◽  
Xiangmo Zhao ◽  
Lei Pu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4764
Author(s):  
Hao Sun ◽  
Jiaqing Liu ◽  
Shurong Chai ◽  
Zhaolin Qiu ◽  
Lanfen Lin ◽  
...  

Depression is a severe psychological condition that affects millions of people worldwide. As depression has received more attention in recent years, it has become imperative to develop automatic methods for detecting depression. Although numerous machine learning methods have been proposed for estimating the levels of depression via audio, visual, and audiovisual emotion sensing, several challenges still exist. For example, it is difficult to extract long-term temporal context information from long sequences of audio and visual data, and it is also difficult to select and fuse useful multi-modal information or features effectively. In addition, how to include other information or tasks to enhance the estimation accuracy is also one of the challenges. In this study, we propose a multi-modal adaptive fusion transformer network for estimating the levels of depression. Transformer-based models have achieved state-of-the-art performance in language understanding and sequence modeling. Thus, the proposed transformer-based network is utilized to extract long-term temporal context information from uni-modal audio and visual data in our work. This is the first transformer-based approach for depression detection. We also propose an adaptive fusion method for adaptively fusing useful multi-modal features. Furthermore, inspired by current multi-task learning work, we also incorporate an auxiliary task (depression classification) to enhance the main task of depression level regression (estimation). The effectiveness of the proposed method has been validated on a public dataset (AVEC 2019 Detecting Depression with AI Sub-challenge) in terms of the PHQ-8 scores. Experimental results indicate that the proposed method achieves better performance compared with currently state-of-the-art methods. Our proposed method achieves a concordance correlation coefficient (CCC) of 0.733 on AVEC 2019 which is 6.2% higher than the accuracy (CCC = 0.696) of the state-of-the-art method.


Sign in / Sign up

Export Citation Format

Share Document