scholarly journals A Fault Diagnosis Method of Rolling Bearing Integrated with Cooperative Energy Feature Extraction and Improved Least-Squares Support Vector Machine

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhang Xu ◽  
Darong Huang ◽  
Tang Min ◽  
Yunhui Ou

To solve the problem that the bearing fault of variable working conditions is challenging to identify and classify in the industrial field, this paper proposes a new method based on optimization of multidimension fault energy characteristics and integrates with an improved least-squares support vector machine (LSSVM). First, because the traditional wavelet energy feature is difficult to effectively reflect the characteristics of rolling bearing under different working conditions, based on analyzing the wavelet energy feature extraction in detail, a collaborative method of multidimension fault energy feature extraction combined with the method of Transfer Component Analysis (TCA) is constructed, which improves the discrimination between the different features and the compactness between the same features of rolling bearing faults. Then, for solving the problem of the local optimal of particle swarm optimization (PSO) in fault diagnosis and recognition of rolling bearing, an improved LSSVM based on particle swarm optimization and wavelet mutation optimization is established to realize the collaborative optimization and adjustment of LSSVM dynamic parameters. Based on the improved LSSVM and optimization of multidimensional energy characteristics, a new method for fault diagnosis of rolling bearing is designed. Finally, the simulation and analysis of the proposed algorithm are verified by the experimental data of different working conditions. The experimental results show that this method can effectively extract the multidimensional fault characteristics under variable working conditions and has a high fault recognition rate.

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Xingang WANG ◽  
Chao WANG

Due to the difficulty that excessive feature dimension in fault diagnosis of rolling bearing will lead to the decrease of classification accuracy, a fault diagnosis method based on Xgboost algorithm feature extraction is proposed. When the Xgboost algorithm classifies features, it generates an order of importance of the input features. The time domain features were extracted from the vibration signal of the rolling bearing, the time-frequency features were formed by the singular value of the modal components that were decomposed by the variational mode decomposition. Firstly, the extracted time domain and time-frequency domain features were input into the support vector machine respectively to observe the fault diagnosis accuracy. Then, Xgboost algorithm was used to rank the importance of features and got the accuracy of fault diagnosis. Finally, important features were extracted and the extracted features were input into the support vector machine to observe the fault diagnosis accuracy. The result shows that the fault diagnosis accuracy of rolling bearing is improved after important feature extraction in time domain and time-frequency domain by Xgboost.


2011 ◽  
Vol 216 ◽  
pp. 153-157
Author(s):  
D.L. Yang ◽  
Xue Jun Li ◽  
K. Wang ◽  
Ling Li Jiang

The parameter optimization is the key to study of support vector machine (SVM). With strong global search capability of bacterial foraging algorithm(BFA), the optimization method—support vector machine parameters optimization based on bacterial foraging algorithm was proposed, which can achieve the dynamic optimization of the parametersCandγ,and overcomes the problem of inefficiency for selecting reasonable parameters according to the experience in the traditional fault diagnosis. Compared with other methods, the BFA is simpler and easier for programming, and the optimization SVM model become smaller. The rolling bearing fault diagnosis results show that bacterial foraging algorithm is suitable for support vector machine parameter optimization.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Lijun Wang ◽  
Shengfei Ji ◽  
Nanyang Ji

This paper presents a method that combines Shuffled Frog Leaping Algorithm (SFLA) with Support Vector Machine (SVM) method in order to identify the fault types of rolling bearing in the gearbox. The proposed method improves the accuracy of fault diagnosis identification after processing the collected vibration signals through wavelet threshold denoising. The global optimization and high computational efficiency of SFLA are applied to the SVM model. Simulation results show that the SFLA-SVM algorithm is effective in fault diagnosis. Compared with SVM and Particle Swarm Optimization SVM (PSO-SVM) algorithms, it is demonstrated that the SFLA-SVM algorithm has the advantages of better global optimization, higher accuracy, and better reliability of diagnosis. Its accuracy is further improved through the integration of the wavelet threshold denoising method.


Sign in / Sign up

Export Citation Format

Share Document