Real-time reservoir model updating in thermal recovery: Application of analytical proxies and Kalman filtering

2015 ◽  
Vol 127 ◽  
pp. 196-211 ◽  
Author(s):  
Azad Ali ◽  
Rick J. Chalaturnyk ◽  
Sahar Movaghati
SPE Journal ◽  
2007 ◽  
Vol 12 (02) ◽  
pp. 156-166 ◽  
Author(s):  
Xian-Huan Wen ◽  
Wen H. Chen

Summary The concept of "closed-loop" reservoir management is currently receiving considerable attention in the petroleum industry. A "real-time" or "continuous" reservoir model updating technique is a critical component for the feasible application of any closed-loop, model-based reservoir management process. This technique should be able to rapidly and continuously update reservoir models assimilating the up-to-date observations of production data so that the performance predictions and the associated uncertainty are up-to-date for optimization of future development/operations. The ensemble Kalman filter (EnKF) method has been shown to be quite efficient for this purpose in large-scale nonlinear systems. Previous studies show that a relatively large ensemble size is required for EnKF to reliably assess the uncertainty, and a confirming step is recommended to ensure the consistency of the updated static and dynamic variables with the flow equations. In this paper, we further explore the capability of EnKF, focusing on some practical issues including the correction of the linear and Gaussian assumptions during filter updating with iteration, the reduction of ensemble size with a resampling scheme, and the impact of data assimilation time interval. Results from the example in this paper demonstrate that the proposed iterative EnKF performs better with more accurate predictions and less uncertainty than the traditional noniterative EnKF. The use of iteration reduces the impact of nonlinearity and non-Gaussianity. Results also show that iteration may only be required when predictions are considerably deviated from the observations. The proposed resampling scheme can significantly reduce the ensemble size necessary for reliable assessment of uncertainty with improved accuracy. Finally, we show that the noniterative EnKF is sensitive to the size of time interval between the assimilation steps. Using the proposed iterative EnKF, results are more stable, more accurate reservoir models and predictions can be obtained even when a large time interval is used. This also indicates that iteration within the EnKF updating serves as a process that corrects the stronger nonlinear and non-Gaussian behaviors when larger time interval is used. Introduction Reservoir models have become an important part of day-to-day decision analysis related to management of oil/gas fields. The closed-loop reservoir management concept (Jansen et al. 2005) allows real-time decisions to be made that maximize the production potential of a reservoir. These decisions are based on the most current information available about the reservoir model and the associated uncertainty of the information. One critical requirement in this real-time, model-based reservoir management process is the ability to rapidly estimate the reservoir models and the associated uncertainty reflecting the most current production data in a real-time fashion. Based on a number of studies, the EnKF method was shown to be well-suited for such applications compared to the traditional history-matching (HM) methods (Evensen 1999; Gu and Oliver 2006; Wen and Chen 2006).


SPE Journal ◽  
2006 ◽  
Vol 11 (04) ◽  
pp. 431-442 ◽  
Author(s):  
Xian-Huan Wen ◽  
Wen H. Chen

Summary The ensemble Kalman Filter technique (EnKF) has been reported to be very efficient for real-time updating of reservoir models to match the most current production data. Using EnKF, an ensemble of reservoir models assimilating the most current observations of production data is always available. Thus, the estimations of reservoir model parameters, and their associated uncertainty, as well as the forecasts are always up-to-date. In this paper, we apply the EnKF for continuously updating an ensemble of permeability models to match real-time multiphase production data. We improve the previous EnKF by adding a confirming option (i.e., the flow equations are re-solved from the previous assimilating step to the current step using the updated current permeability models). By doing so, we ensure that the updated static and dynamic parameters are always consistent with the flow equations at the current step. However, it also creates some inconsistency between the static and dynamic parameters at the previous step where the confirming starts. Nevertheless, we show that, with the confirming approach, the filter shows better performance for the particular example investigated. We also investigate the sensitivity of using a different number of realizations in the EnKF. Our results show that a relatively large number of realizations are needed to obtain stable results, particularly for the reliable assessment of uncertainty. The sensitivity of using different covariance functions is also investigated. The efficiency and robustness of the EnKF is demonstrated using an example. By assimilating more production data, new features of heterogeneity in the reservoir model can be revealed with reduced uncertainty, resulting in more accurate predictions of reservoir production. Introduction The reliability of reservoir models could increase as more data are included in their construction. Traditionally, static (hard and soft) data, such as geological, geophysical, and well log/core data are incorporated into reservoir geological models through conditional geostatistical simulation (Deutsch and Journel 1998). Dynamic production data, such as historical measurements of reservoir production, account for the majority of reservoir data collected during the production phase. These data are directly related to the recovery process and to the response variables that form the basis for reservoir management decisions. Incorporation of dynamic data is typically done through a history-matching process. Traditionally, history matching adjusts model variables (such as permeability, porosity, and transmissibility) so that the flow simulation results using the adjusted parameters match the observations. It usually requires repeated flow simulations. Both manual and (semi-) automatic history-matching processes are available in the industry (Chen et al. 1974; He et al. 1996; Landa and Horne 1997; Milliken and Emanuel 1998; Vasco et al. 1998; Wen et al. 1998a, 1998b; Roggero and Hu 1998; Agarwal and Blunt 2003; Caers 2003; Cheng et al. 2004). Automatic history matching is usually formulated in the form of a minimization problem in which the mismatch between measurements and computed values is minimized (Tarantola 1987; Sun 1994). Gradient-based methods are widely employed for such minimization problems, which require the computation of sensitivity coefficients (Li et al. 2003; Wen et al. 2003; Gao and Reynolds 2006). In the recent decade, automatic history matching has been a very active research area with significant progress reported (Cheng et al. 2004; Gao and Reynolds 2006; Wen et al. 1997). However, most approaches are either limited to small and simple reservoir models or are computationally too intensive for practical applications. Under the framework of traditional history matching, the assessment of uncertainty is usually through a repeated history-matching process with different initial models, which makes the process even more CPU-demanding. In addition, the traditional history-matching methods are not designed in such a fashion that allows for continuous model updating. When new production data are available and are required to be incorporated, the history-matching process has to be repeated using all measured data. These limit the efficiency and applicability of the traditional automatic history-matching techniques.


2016 ◽  
Vol 139 ◽  
pp. 205-218 ◽  
Author(s):  
Yuanyuan Shuai ◽  
Christopher White ◽  
Ting Sun ◽  
Yin Feng

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Pengpeng Jiao ◽  
Ruimin Li ◽  
Tuo Sun ◽  
Zenghao Hou ◽  
Amir Ibrahim

Short-term prediction of passenger flow is very important for the operation and management of a rail transit system. Based on the traditional Kalman filtering method, this paper puts forward three revised models for real-time passenger flow forecasting. First, the paper introduces the historical prediction error into the measurement equation and formulates a revised Kalman filtering model based on error correction coefficient (KF-ECC). Second, this paper employs the deviation between real-time passenger flow and corresponding historical data as state variable and presents a revised Kalman filtering model based on Historical Deviation (KF-HD). Third, the paper integrates nonparametric regression forecast into the traditional Kalman filtering method using a Bayesian combined technique and puts forward a revised Kalman filtering model based on Bayesian combination and nonparametric regression (KF-BCNR). A case study is implemented using statistical passenger flow data of rail transit line 13 in Beijing during a one-month period. The reported prediction results show that KF-ECC improves the applicability to historical trend, KF-HD achieves excellent accuracy and stability, and KF-BCNR yields the best performances. Comparisons among different periods further indicate that results during peak periods outperform those during nonpeak periods. All three revised models are accurate and stable enough for on-line predictions, especially during the peak periods.


Sign in / Sign up

Export Citation Format

Share Document