scholarly journals Hole-cleaning performance comparison of oil-based and water-based drilling fluids

2017 ◽  
Vol 159 ◽  
pp. 49-57 ◽  
Author(s):  
Sneha Sayindla ◽  
Bjørnar Lund ◽  
Jan David Ytrehus ◽  
Arild Saasen
Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Sneha Sayindla ◽  
Bjørnar Lund ◽  
Benjamin Werner ◽  
...  

One important requirement for a drilling fluid is the ability to transport the cuttings out of the borehole. Improved hole cleaning is a key to solve several challenges in the drilling industry and will allow both longer wells and improved quality of well construction. It has been observed, however, that drilling fluids with similar properties according to the API standard can have significantly different behavior with respect to hole cleaning performance. The reasons for this are not fully understood. This paper presents results from flow loop laboratory tests without and with injected cuttings size particles using a base oil and a commercial oil based drilling fluid. The results demonstrate the importance of the rheological properties of the fluids for the hole cleaning performance. A thorough investigation of the viscoelastic properties of the fluids was performed with a Fann viscometer and a Paar-Physica rheometer, and was used to interpret the results from the flow loop experiments. Improved understanding of the fluid properties relevant to hole cleaning performance will help develop better models of wellbore hydraulics used in planning of well operations. Eventually this may lead to higher ROP with water based drilling fluids as obtained with oil based drilling fluids. This may ease cuttings handling in many operations and thereby significantly reduce the drilling cost using (normally) more environmentally friendly fluids. The experiments have been conducted as part of an industry-sponsored research project where understanding the hole cleaning performance of various oil and water based drilling fluids is the aim. The experiments have been performed under realistic conditions. The flow loop includes a 10 meter long test section with 2″ OD freely rotating drillstring inside a 4″ ID wellbore made of concrete. Sand particles were injected while circulating the drilling fluid through the test section in horizontal position.


Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Bjørnar Lund ◽  
Benjamin Werner ◽  
Nils Opedal ◽  
...  

One important requirement for a drilling fluid is the ability to transport the cuttings out of the borehole. Improved hole cleaning is a key to solve several challenges in the drilling industry and will allow both longer wells and improved quality of well construction. It has been observed, however, that drilling fluids with similar properties according to the API standard can have significantly different behavior with respect to hole cleaning performance. The reasons for this are not fully understood. This paper presents results from laboratory tests where water based drilling fluids with similar rheological properties according to API measurements have been tested for their hole cleaning capabilities in a full scale flow loop. Thorough investigation of the viscoelastic properties of the fluids were performed with, among other instruments, a Paar-Physica rheometer. Improved understanding of the fluid properties relevant to hole cleaning performance will help develop better models of wellbore hydraulics used in planning of well operations. Eventually this may lead to higher ROP with water based drilling fluids as obtained with oil based drilling fluids. This may ease cuttings handling in many operations and thereby significantly reduce the drilling cost using (normally) more environmentally friendly fluids. The experiments have been conducted as part of an industry-sponsored research project where understanding the hole cleaning performance of various oil and water based drilling fluids is the aim. The experiments have been performed under realistic conditions. The flow loop includes a 12 meter long test section with 2″ OD freely rotating drillstring inside a 4″ ID wellbore made of concrete. Sand particles were injected while circulating the drilling fluid through the test section in horizontal position.


2021 ◽  
Author(s):  
Waleepon Sukarasep ◽  
Rahul Sukanta Dey ◽  
Visarut Phonpuntin

Abstract Sodium Silicate were first used in water-based drilling fluids to stabilize claystone formations in the 1930's, but found favour in the 1990's in high performance, non dispersed water based systems for drilling problematic claystone formations as an alternative to oil-based drilling fluids. In Bongkot South field, Gulf of Thailand, sodium silicate-based drilling fluid (SSBDF) were used with mixed success in shallow gas drilling. Typically, platform WP-33, the claystone formation of the 12¼" section were drilled with 5% v/v Sodium Silicate in the water based drilling fluid together with excessive circulation as intention to improve hole cleaning frequently result in a wellbore that was overgauge by upto 18.9% in some case. This led to further hole cleaning problem that also compromised cement job quality. A further 6 well campaign on WPS-16 required a re-evaulation of the SSBDF coupled to an understanding of the wellbore instability mechanisms that leads to hole enlargement. To overcome better wellbore stability, sodium silicate has been designed by increased concentration to 8% v/v sodium silicate treated drilling fluid showed optimal design for application base on application of SSBDF has been used on platform WP-11 in 2002. Rheology, hydraulic and flow regime was adjusted for laminar flow that reduced the erosion of fragile claystone formation in the wellbore. The revised SSBDF formulation at WPS-16 result in a significant reduction of hole enlargement to 3.2% in the claystone section through a combination of chemicals and mechanical inhibition that contribute improved hole cleaning. The addition of wellbore strengthening material also provide an effective seal to minimize gas invasion. This paper describes the field trials in the Gulf of Thailand drilled with revised sodium sodium silicate based drilling fluid, the use of wellbore strengthening materials to manage gas influxes, better drilling practice and hydraclic simulation concluded that high performance water based drilling fluid of this nature have wider application where oil-base drilling fluid have traditionally been used.


2019 ◽  
Vol 176 ◽  
pp. 220-231 ◽  
Author(s):  
Natalie Vanessa Boyou ◽  
Issham Ismail ◽  
Wan Rosli Wan Sulaiman ◽  
Amin Sharifi Haddad ◽  
Norhafizuddin Husein ◽  
...  

2010 ◽  
Author(s):  
Mehmet Evren Ozbayoglu ◽  
Reza Ettehadi Osgouei ◽  
Murat Ahmet Ozbayoglu ◽  
Ertan Yuksel

Sign in / Sign up

Export Citation Format

Share Document