hole cleaning
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 94)

H-INDEX

15
(FIVE YEARS 6)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 399
Author(s):  
Guoshuai Ju ◽  
Tie Yan ◽  
Xiaofeng Sun

In the drilling of horizontal wells, the drill cuttings tend to settle down on the low side of the annulus due to gravity and form a stationary bed, which results in hole cleaning problems. In this paper, a novel type of drillpipe with an elliptical shape was proposed to alleviate inadequate hole cleaning during the drilling of horizontal wells. A three-dimensional computational fluid dynamic (CFD) Eulerian-Eulerian approach with the Realizable k-ɛ turbulence model was developed to predict the solid–liquid two-phase flow in the annular space. Numerical examples were given to investigate the influence of different parameters on cuttings’ transport behavior, and the elliptical drillpipe was compared with the circular drillpipe. The annular cuttings concentration, annular pressure drop, and hole cleaning efficiency were evaluated. The numerical results clarify the potential of the elliptical drillpipe to enhance the hole cleaning efficiency without significantly increasing the annular pressure drop. Due to the swirl flow and secondary flow caused by the rotation of the curvature wall, the swaying phenomenon of drill cuttings’ distribution along the rotation direction of drillpipe was observed and enhanced the cuttings transport ability. Using the elliptical drillpipe as a joint-type tool can improve hole cleaning performance. Under the optimum conditions applied in this study, the hole cleaning efficiency increased by nearly 18%.


2022 ◽  
pp. 149-191
Author(s):  
Rasool Khosravanian ◽  
Bernt S. Aadnøy
Keyword(s):  

2021 ◽  
Author(s):  
Ashabikash Roy Chowdhury ◽  
Matthew Forshaw ◽  
Narender Atwal ◽  
Matthias Gatzen ◽  
Salman Habib ◽  
...  

Abstract In the increasingly complex and cost sensitive drilling environment of today, data gathered using downhole and surface real-time sensor systems must work in unison with physics-based models to facilitate early indication of drilling hazards, allowing timely action and mitigation. Identification of opportunities for reduction of invisible lost time (ILT) is similarly critical. Many similar systems gather and analyze either surface or downhole data on a standalone basis but lack the integrated approach towards using the data in a holistic decision-making manner. These systems can either paint an incomplete picture of prevailing drilling conditions or fail to ensure system messages result in parameter changes at rigsite. This often results in a hit or miss approach in identification and mitigation of drilling problems. The automated software system architecture is described, detailing the physics-based models which are deployed in real-time consuming surface and downhole sensor data and outputting continuous, operationally relevant simulation results. Measured data from either surface, for torque & drag, or downhole for ECD & ESD is then automatically compared both for deviation of actual-to-plan, and for infringement of boundary conditions such as formation pressure regime. The system is also equipped to model off-bottom induced pressures; swab & surge, and dynamically advise on safe, but optimum tripping velocities for the operation at hand. This has dual benefits; both the avoidance of costly NPT associated with swab & surge, as well as being able to visually highlight running speed ILT. All processing applications are coupled with highly intuitive user interfaces. Three successful deployments all onshore in the Middle East are detailed. First a horizontal section where real-time model vs. actual automatic comparison of torque & drag samples, validated with PWD data allowed early identification of poor hole cleaning. Secondly, a vertical section where again the model vs. actual algorithmic automatically identified inadequate hole cleaning in a case where conventional human monitoring did not. Finally, a case is exhibited where real-time modelling of swab and surge, as well as intuitive visualization of the trip speeds within those boundary conditions led to a significant increase in average tripping speeds when compared to offset wells, reducing AFE for the operator. Common for all three deployments was an integrated well services approach, with a single service company providing the majority of services for well construction, as well as an overarching remote operations team who were primary users of the software solutions deployed.


2021 ◽  
Author(s):  
Hussien Alzaki ◽  
Nadhir Rahmani ◽  
Matthew Carr

Abstract Long-extended reach drilling (ERD) well has become necessary to reach untapped resources. This paper will describe pre-planning, execution and post results of drilling ERD wells with large bore design of 12¼" as the main step out section and deploying 9⅝" casing on shallow TVD of 4,200’. Progressive increase of the ERD ratio and complexity from one well to the next was planned and executed till we reached the longest well deploying 8 KM of 9⅝" casing with 5.4 ERD ratio at 26,179' TD horizontally all the way. A learning curve was established on drilled wells while progressively increasing reach and complexity. Subject well was the longest of any well planned in the field by far. Success involved implementation of technically modeled engineered solutions and verified during execution. Operational procedures including but not limited to: proper planning and execution of well profile to ensure optimum placement in a specific formation and minimum side forces. Drilling and tripping procedures to ensure the lowest friction factor (FF) and allow drilling to target depth (TD) with optimum rig capability. Engineered solution for casing running technologies, which involved rotation and conventional running and floatation. The longest ERD well was drilled to 26,179' TD with field ROP record in 12¼" hole section, maintaining very good hole quality proved by smooth bit trips out of hole and the final trip at TD on elevators. Hole cleaning and fluids strategy was developed and executed efficiently to measure FFs as low as possible for successful 9⅝" deployment. Engineered solution was proposed for 9⅝" deployment and was successfully trial tested on a shorter well to validate simulations. Casing rotation FFs came close to the modeled FFs. The 9⅝" Casing was deployed to bottom as planned and the cement job was performed successfully. Various records were achieved: the subject well achieved the deepest 9⅝" horizontal casing, the deepest 12¼" horizontal at TVD shallower than 5,000'. The longest 12¼" horizontal open hole at TVD shallower than 5,000' with section footage of 16,164'. The 9⅝" casing was deployed as a long string, eliminating the cost and challenges of a liner hanger and the need for a future tieback and also keeping hole sizes available for main and contingency sections to drill the reservoirs ahead. In addition to existing developed procedures and practices for ERD wells, subject well was dealing with the challenge of drilling a long 12 ¼" hole with a torque limitation of 30K lbsf.ft on TDS, and 4200 psi on surface equipment, and running the longest casing horizontally at such a shallow TVD, which is being done the first time globally. The success proved that challenging ERD wells can be drilled with optimum investments on rig capabilities.


2021 ◽  
Author(s):  
Alexey Ruzhnikov ◽  
Edgar Echevarria

Abstract In the Middle East many of the matured fields have fractured or vugular formations where the drilling is continued without return to a surface. This situation has been commonly interpreted as lack of hole cleaning and high risk of stuck pipe. The manuscript describes a study performed to analyze the hole cleaning while blind drilling horizontal sections. Most of the losses while drilling across fractured or vugular formations happen sudden, and this represents a risk of formation instability and stuck pipe. Additionally, the cuttings accumulation may lead to a potential pack off. To understand the hole cleaning the annular pressure while drilling was introduced in different sections, what via change of the equivalent static and dynamic densities describes the cutting and cavings accumulation in the annulus. Additionally, the hole cleaning behavior with different fluids pumped through the drillstring (i.e. drilling fluid, water, water with sweeps) was studied. The proposed study was performed in 4 different fields, 9 wells, across horizontal 6⅛-in. sections with total lost circulation. It was identified that while drilling with full returns ECD vs ESD variations are within 1.5 ppg, those variations are matching with the modeling of hydraulics. Once total losses encountered the variations between ECD and ESD are very low - within 0.2 ppg - indicating that annular friction losses below the loss circulation zone are minimal. This support the theory that all the drilled cuttings are properly lifted from bottom and carried to the karst into the loss circulation zone and not fluctuating above the loss zone. Additionally, minor to no relation found in hole cleaning while drilling with mud or a water with sweeps. This finding also is aligned with the stuck pipe statistics that shows higher incidents of stuck pipe while drilling the with full circulation due to pack off. The manuscript confirms the theory of the hole cleaning in total lost circulation and application of different hole cleaning practices to improve it. The results of the study can be implemented in any project worldwide.


2021 ◽  
Author(s):  
Almostafa Alhadi ◽  
Musaab Magzoub

Abstract In the Permian basin, Spraberry Trend is one of the formations that markedly contribute to the unconventional shale production in the U.S. lately. Unusual shale reactivity was encountered while drilling several horizontal wells, leading to wellbore instability issues. Consequently, shakers’ screens blockage increased the mud losses and drilling time, leading to an increased non-productive time (NPT). This paper addresses the challenges and causes of the formation instability issues resulted from shale interaction with the used drilling fluid and presents the timely actions taken to mitigate such problems. During the drilling operation, several rock samples were collected at different depth intervals from the shale shaker. Rock samples were analyzed to identify the clay and minerals contents in the formations. The collected samples were first cleaned to remove the mud, dried, ground, and then characterized by an X-ray diffraction test (XRD) and microscopic imaging. After identifying the possible reasons for the wellbore instability, several timely actions were taken to mitigate this issue. These actions include: 1) increasing the emulsion stability, 2) increasing the water phase salinity (WPS), 3) decreasing the water phase volume, 4) adding wetting agent, 5) using wider screens for the shaker, and 6) controlling drilling parameters such as weight on bit and rotational speed. Afterward, wellbore stability, well control problem indicators, and drilling fluid properties, especially rheology, were closely monitored to identify any subsequent or unusual events. The geological and mineralogy studies show that the drilled formation contains high smectite and illite clay content, up to 49%, which was believed to be the main reason for the unusual shale reactivity. Replacing the existing screens (200 API) with wider screens (160 and 140 API) showed an insignificant effect in mitigating the screens blockage. The adopted method of reducing the rate of penetration (ROP) and increasing the circulation time helped significantly alleviate the screens blockage by reducing the cuttings production and giving more time for hole cleaning. Furthermore, the optimal hole cleaning successfully increased the formation's stability. Adding a wetting agent to the drilling mud did not impact the cuttings aggregations; however, it led to a decrease in the rheological properties; thus, adding more concentration of the viscosifier was required to maintain the fluid rheology. Increasing the water phase salinity (WPS) to over 230k ppm and the emulsion stability to over 700 mV was considered the backbone of the treatment plan that significantly resolved the issue by inhibiting the clay. Eventually, the critical considerations were pointed out.


2021 ◽  
pp. 1-16
Author(s):  
Mohamed Shafik Khaled ◽  
Hicham Ferroudji ◽  
Mohammad Azizur Rahman ◽  
Ibrahim Hasan Galal ◽  
A. Rashid Hasan

Summary Horizontal wells are designed to have smooth (straight), curved, and lateral sections. However, the actual drilled path usually suffers from unwanted undulations from the planned well trajectory known as wellbore tortuosity. Wellbore tortuosity can slow the drilling penetration rate, aggravate drillstring vibration and buckling, complicate the casing and cement job, and lead to inaccurate wellbore position. This paper presents a validated computational fluid dynamics (CFD) model to investigate the impact of wellbore tortuosity on hole cleaning. The Eulerian-Eulerian approach is used to simulate solid-liquid laminar flow in annular geometry using polyhedral mesh. Then, the impact of wellbore tortuosity on cuttings accumulation, annular pressure loss, and fluid velocity was investigated and compared with the flow behavior in a straight horizontal well. A parametric analysis of spiral period length, spiral amplitude, drillstring rotation, flow rate, annular eccentricity, drilling rate of penetration (ROP), and cuttings size was conducted to assess their influence on cuttings transport in spiral tortuous holes and their relative magnitude to other design or operating factors. Simulation results show that polyhedral mesh is an optimum meshing technique for spiral profile geometry. Wellbore tortuosity aggravates hole cleaning in lateral sections based on the length of the spiral period and/or the spiral amplitude. Reduction in cuttings velocity was observed in the top part of the spiral geometry (crest), causing large deposition of cuttings in this area compared to the spiral lower part (trough). Drillstring rotation from 0 to 200 rev/min is the critical range for efficient hole cleaning in spiral geometry. Cuttings size can improve cuttings accumulation if the particle size is larger than the viscous layer located near the bed velocity profile. The drilling ROP and annular eccentricity aggravate cuttings accumulation and bed deposition in a spiral hole, similar to what is normally observed in straight horizontal wells.


Author(s):  
Mohamed Shafik Khaled ◽  
Muhammad Saad Khan ◽  
Hicham Ferroudji ◽  
Abinash Barooah ◽  
Mohammad Azizur Rahman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document