deviated wells
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 49)

H-INDEX

11
(FIVE YEARS 5)

Author(s):  
Sayantan Ghosh

AbstractDrilling deviated wells has become customary in recent times. This work condenses various highly deviated and horizontal well log interpretation techniques supported by field examples. Compared to that in vertical wells, log interpretation in highly deviated wells is complex because the readings are affected not only by the host bed but also the adjacent beds and additional wellbore-related issues. However, understanding the potential pitfalls and combining information from multiple logs can address some of the challenges. For example, a non-azimuthally focused gamma ray logging while drilling (LWD) tool, used in combination with azimuthally focused density and neutron porosity tools, can accurately tell if an adjacent approaching bed is overlying or underlying. Moreover, resistivity logs in horizontal wells are effective in detecting the presence of adjacent beds. Although the horns associated with resistivity measurements in highly deviated wells are unwanted, their sizes can provide important clues about the angle of the borehole with respect to the intersecting beds. Inversion of horizontal/deviated well logs can also help determine true formation resistivities. Additionally, observed disagreement between resistivity readings with nuclear magnetic resonance (NMR) T2 hydrocarbon peaks can indicate the presence or absence of hydrocarbons. Furthermore, variations in pulsed neutron capture cross sections along horizontal wells, measured while injecting various fluids, can indicate high porosity/permeability unperforated productive zones. Finally, great advances have been made in the direction of the bed geometry determination and geologic modeling using the mentioned deviated well logs. More attention is required toward quantitative log interpretation in horizontal/high angle wells for determining the amount of hydrocarbons in place.


2021 ◽  
Author(s):  
Andrey Timonin ◽  
Eldar Mollaniyazov

Abstract Wells that are already drilled and producing are the most viable sources of future earnings for all oilfield operating companies. Keeping these wells producing economically at optimal rates throughout their lifetimes is top priority. With time, some oilfield operating companies face with production related problems, such us water breakthrough. Production logging is well known technique for locating source of water breakthrough in oil and gas producers. In near-vertical, or slightly deviated wells, producing at high rates, traditional production logging tool string can deliver reliable results. On the other side, in deviated wells, producing at small rates, advanced production logging tool is required, due to presence of fluid segregation and recirculation within borehole. Our experience shows that wisely selected logging technique, depending on downhole logging environment, allows to locate source of water production with confidence for planning water shut-off remedial operations. In wells completed with standalone sand screens water shut-off operation might be complicated as often rig is required for pulling out of hole tubing with sand screens. Another method is to perform chemical water shut-off treatment that might be expensive in some cases. Alternative method is to confirm compact sand accumulation in the annulus and set through tubing bridge plug inside sand screens in wells that producing water from bottommost layers. Plug is deployed in wells without pulling out of hole tubing, as it can pass through restrictions, making this rigless intervention fifty times cheaper compared to intervention with rig. Field examples, presented in this paper, describe fit-for-purpose logging approach for locating source of water production accurately and executing unique rigless water shut-off operations in cased wells completed with standalone sand screens to increase hydrocarbons production in cost-effective way. After remedial operations we observed significant decline in water production and increase in oil rates in all wells that were intervened.


2021 ◽  
Author(s):  
Asgar Eyvazi Farab ◽  
Khalil Shahbazi ◽  
Abdolnabi Hashemi ◽  
Alireza Shahbazi

Abstract Casing wear is an essential and complex phenomenon in oil and gas wells. Research is being conducted to predict this phenomenon. This study was conducted at a well in southwestern Iran. In this paper, first examine the force exerted on the drill string. Next, the contact force between the drill string and the casing is calculated. Finally, the wear volume and the depth of the wear groove are determined. These calculations were performed using MATLAB and Python software. In addition, due to the high accuracy of coding, mud log data was used to make the results more accurate. It has also been shown that increasing RPM increases the depth of wear and attempts to drill a highly deviated wells as a sliding mode. Finally, compared the results and matched them with the wireline logs recorded from the well.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012059
Author(s):  
I Mikhaylov ◽  
I Surodina ◽  
V Glinskikh ◽  
M Nikitenko

Abstract The research is aimed at expanding the applicability of the logging tool with toroidal coils from vertical to highly deviated wells. Its electromagnetic signals are computed with a three-dimensional finite-difference simulation algorithm on the computing resources of the Siberian Supercomputer Center of SB RAS, which is accompanied by a multi-aspect numerical analysis of the signals. We consider a wide range of geoelectric models with various resistivity contrasts: those of oil-, gas- and water-saturated reservoirs having a different number of horizontal boundaries and varying thicknesses, including the case of fine layering.


2021 ◽  
Author(s):  
Mahmoud Nader Elzenary

ABSTRACT This project provides a new realistic solution for the accuracy of down hole torque measurements using the integration of the Artificial intelligence (AI) technology with the downhole challenges being faced while drilling deep and high deviated wells. The new estimates are based on surface measurements which have the major influence on the bit torque (downhole torque) values while drilling. Artificial intelligence technology and its related applications such as; artificial neural network (ANN), support vector machine (SVM) and adaptive neuro fuzzy interference system (ANFIS) will be utilized to predict and estimate accurate wellbore torque which will be applied effectively to prevent real time stuck pipe situation through a friendly user software which will maintain the downhole torque within the SAFE zone by controlling the unified surface drilling variables such as; weight on bit (WOB), Rate of Penetration (ROP) and Flow Rate. This downhole torque model will be validated and verified through a real drilling scenario from a field in north of Africa. The field data includes weight on bit, surface torque, stand-pipe pressure, and rate of penetration were collected from the mentioned well which had experienced a costly stuck pipe situation. However, with the provided model the same encountered scenario will be avoided, due to the optimization of the real time drilling variables and hence, saving the well and evade a costly non-productive time.


2021 ◽  
Author(s):  
Nikita Vladislavovich Dubinya ◽  
Sergey Andreevich Tikhotskiy ◽  
Sergey Vladimirovich Fomichev ◽  
Sergey Vladimirovich Golovin

Abstract The paper presents an algorithm for the search of the optimal frilling trajectory for a deviated well which is applicable for development of naturally fractured reservoirs. Criterion for identifying the optimal trajectory is the feature of the current study – optimal trajectory is chosen from the perspective of maximizing the positive effect related to activation of natural fractures in well surrounding rock masses caused by changes of the rocks stress-strain state due to drilling process. Drilling of a deviated well is shown to lead to the process of natural fractures in the vicinity of the well becoming hydraulically conductive due to drilling. The paper investigates the main natural factors – tectonic stresses and fluid pressure – and drilling parameters – drilling trajectory and mud pressure – influencing the number and variety of natural fractures being activated due to drilling process. An algorithm of finding the optimal drilling parameters from the perspective of natural fractures activation is proposed as well. Different theoretical scenarios are considered to formulate the general recommendations on drilling trajectory choice according to estimations of stress state of the reservoir. These estimations can be provided based on results of three- and four-dimensional geomechanical modeling. Such modeling may be completed as well for constructing geomechanically consistent natural fracture model which can be used to optimize drilling trajectories during exploration and development of certain objects. The paper presents a detailed algorithm of constructing such fracture models and deviated wells trajectories optimization. The results presented in the paper and given recommendations may be used to enhance drilling efficiency for reservoirs characterized by considerable contribution of natural fractures into filtration processes.


2021 ◽  
Author(s):  
José Wilfredo González ◽  
Alejandro Jose Linares ◽  
Diego Armando Rodriguez ◽  
Gerson Orlando Rivera ◽  
Virginie M. Schoepf ◽  
...  

Abstract The objective of this paper is to depict the quantification of the production rates of the different phases in deviated wells with high gas-liquid relation using the Flow Array Sensing Tool (FAST). The readings of standard Production Logging Tools (fullbore flowmeter, density, and capacitance) are centralized, therefore they are affected if there is re-circulation of the heavy phase (liquid). The phase segregation and possible apparent down flow of the heavy phase makes it very difficult to determine the distribution of the produced fluids, and in some cases the spinner flowmeter tends to stop or gives inaccurate readings. The cause of these inaccurate readings is that the centralized spinner is affected by positive flow in the high side and negative flow in the low side of the wellbore, and the spinner shows no flow or even apparent downhole flow, when there is a real positive flow. The FAST tool used during the acquisition of the production logs is an ultracompact production logging tool (3 ft long) that is capable to measure multiphase flows with an array of 8 sensors, two in each arm and located 90° apart. These sensors are based on MEMS (Microelectromechanichal Systems), and among the interchangeable sensors we have optical probes that takes ultra-rapid measurements of the refractive index and can determine hold-up of water, oil and gas; the electrical probes that measures conductivity to differentiate hydrocarbons from water, and magnetic probes with micro-spinners to determine the flow rate. Both the three phase optical probes and the electrical probes have excellent response including water hold-ups over 90% that cannot be measured with a standard capacitance tool. The data logged with FAST in deviated wells was processed and interpreted to obtain the apparent flow velocity profiles of each of the 4 micro-spinners and with the three phase optical probes, and the relative bearing curves the velocity maps, and hold-up maps where obtained. The velocity map showed that there was negative flow in the low side of the well and positive flow in the high side while the hold-up map showed the light phase (gas) in the high side of the well. Both maps showed clearly the flow pattern and were used to quantify the production of each perforation and the total rate matched closely the surface rate (within 2% deviation). With the hold-up and velocity maps, the real flow rates were obtained with high confidence, and the flow pattern were shown clearly in deviated wells. The three phase optical probes, and electrical probes are excellent indicators of water and hydrocarbons inflow in a wide range of hold-ups.


2021 ◽  
Author(s):  
Lawrence Camilleri ◽  
Jorge Luis Villalobos ◽  
Pedro Luis Escalona ◽  
Alvaro Correal ◽  
Carlos Reyes ◽  
...  

Abstract The Shaya wells have vertical depths of 11,000 ft and are heavily depleted. They, therefore, require 10,000 ft of lift to achieve the target drawdown. Electrical submersible pumps (ESPs) were deployed, but because of the low flow rates (80 B/D), produced solids, and high free gas content, initial run lives were uneconomical. This 47-well case study demonstrates how a holistic design and operating procedure achieved both the target drawdown and an economical mean time between failure (MTBF). "Learning from history" was the key method as there was sufficient ESP data to determine the root cause of ESP failures based on a combination of dismantle inspection and failure analysis (DIFA) and operating conditions. Moreover, production testing combined with real-time downhole gauge data enabled inflow characterization with both nodal and pressure transient analysis, thereby establishing the well potential and ensuring that the new proposed design was not only reliable but also achieved the targeted drawdown. An additional requirement was to handle both the current low rates and higher rates associated with future waterflooding. A historical review of 9 wells was conducted, followed by a new ESP design that was proposed and installed in 47 wells, which achieved an MTBF of over 940 days, whereas previous designs in the same wells had an MTBF of only 650 days. This substantial improvement was achieved without compromising drawdown as the wells were produced with a flowing intake pressure of approximately 250 psia at setting depths of 9,500 ft. This result is particularly noteworthy when one considers the harshness of the well conditions and, in particular, bottom-hole temperatures of 240°F, fines migration, deviated wells with doglegs above 2.5°/100ft, intake pressures below bubble point and low productivity indices (PIs) of 0.2 B/D/psi. The high depletion combined with low PIs, which resulted in very low flow rates of as low as 50 B/D, was the most challenging factor of this application. Outflow modeling and wellbore hydraulics were also important considerations to limit solid fallback due to insufficient velocity in the production tubing as well minimize heat rise caused by startup transients, which can be long in low-PI wells. ESPs are traditionally best suited to wells with liquid rates providing sufficient cooling for both the motor and the pump as well as short unloading transients during startup. This success story, therefore, provides an important reference for future ESP applications in very low flow rates in deep wells, which are beyond the recommended application envelope of alternative low flow rate artificial lift solutions such as progressive cavity pumps and sucker rod pumps.


2021 ◽  
Author(s):  
Hanan Ghannam ◽  
Houssam Mourani ◽  
Brian Joseph Schwanitz

Abstract Pipe cutting operations are often a critical part of stuck pipe situations, well interventions and plug and abandon operations which all need to remove cut sections of pipe from the well. Unlike traditional ‘blade’ style e-line cutters, which can jam under pipe compression or explosive pipe cutters, which need to dress-over the jagged cut by the rig, a new electric line mechanical cutter's unique design enables performance even if the pipe is under compression, in tension or is neutral. It can also perform multiple cuts in the same run, while creating a clean and machined cut with tool-entry friendly shape. This paper will describe the technology of the new generation cutter, present two case histories; one of multiple cuts of stuck drill pipe, per each run in hole, from Germany and one of a critical tubing cut from a subsea well in Nigeria, using electric wireline and tractor conveyed services for many tasks traditionally performed with coiled tubing in highly deviated wells. These "light vs heavy" solutions can often be done off-line from the rig.


Sign in / Sign up

Export Citation Format

Share Document