static force
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 54)

H-INDEX

22
(FIVE YEARS 3)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Shaodong Li ◽  
Peiyuan Gao ◽  
Hongjian Yu ◽  
Mingqi Chen

In order to realize robot-assisted spinal laminectomy surgery and meet the clinical needs of the robot workspace, including accuracy in human–robot collaboration, an asymmetrical 3-DOF spatial translational robot is proposed, which can realize spinal laminectomy in a fixed posture. First, based on the screw theory, the constraint screw system of the robot was established, and the degree of freedom was derived to verify the spatial translational ability of the robot. Then, a kinematic model of the robot was established, and a static force model of the robot was derived based on the kinematic model. The mathematical relationship between the external force and the joint force/torque was obtained, with the quality of all links considered in the model. Finally, we modeled the robot and imported it into ADAMS to obtain the static force simulation results of the 3D model. The force error was approximately 0.001 N and the torque error was approximately 0.0001 N∙m compared with the simulation results of the mathematical model, accounting for 1% of the joint force/torque, which is acceptable. The result also showed the correctness of the mathematical models, and provides a theoretical basis for motion control and human–robot collaboration.


2022 ◽  
Vol 258 ◽  
pp. 04009
Author(s):  
Viljami Leino ◽  
Nora Brambilla ◽  
Julian Mayer-Steudte ◽  
Antonio Vairo

We explore a novel approach to compute the force between a static quark-antiquark pair with the gradient flow algorithm on the lattice. The approach is based on inserting a chromoelectric field in a Wilson loop. The renormalization issues, associated with the finite size of the chromoelectric field on the lattice, can be solved with the use of gradient flow. We compare numerical results for the flowed static potential to our previous measurement of the same observable without a gradient flow.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Daniel Bourbonnais ◽  
René Pelletier ◽  
Joëlle Azar ◽  
Camille Sille ◽  
Michel Goyette

Abstract Background Controlled static exertion performed in the sagittal plane on a transducer attached to the foot requires coordinated moments of force of the lower extremity. Some exertions and plantarflexion recruit muscular activation patterns similar to synergies previously identified during gait. It is currently unknown if persons with hemiparesis following stroke demonstrate similar muscular patterns, and if force feedback training utilizing static exertion results in improved mobility in this population. Methods Electromyographic (EMG) activity of eight muscles of the lower limb were recorded using surface electrodes in healthy participants (n = 10) and in persons with hemiparesis (n = 8) during an exertion exercise (task) performed in eight directions in the sagittal plane of the foot and a plantarflexion exercise performed at 20 and 40% maximum voluntary effort (MVE). Muscle activation patterns identified during these exertion exercises were compared between groups and to synergies reported in the literature during healthy gait using cosine similarities (CS). Functional mobility was assessed in four participants with hemiparesis using GAITRite® and the Timed Up and Go (TUG) test at each session before, during and after static force feedback training. Tau statistics were used to evaluate the effect on mobility before and after training. Measures of MVE and the accuracy of directional exertion were compared before and after training using ANOVAs. Spearman Rho correlations were also calculated between changes in these parameters and changes in mobility before and after the training. Results Muscle activation patterns during directional exertion and plantarflexion were similar for both groups of participants (CS varying from 0.845 to 0.977). Muscular patterns for some of the directional and plantarflexion were also similar to synergies recruited during gait (CS varying from 0.847 to 0.951). Directional exertion training in hemiparetic subjects resulted in improvement in MVE (p < 0.040) and task performance accuracy (p < 0.001). Hemiparetic subjects also demonstrated significant improvements in gait velocity (p < 0.032) and in the TUG test (p < 0.022) following training. Improvements in certain directional efforts were correlated with changes in gait velocity (p = 0.001). Conclusion Static force feedback training following stroke improves strength and coordination of the lower extremity while recruiting synergies reported during gait and is associated with improved mobility.


Author(s):  
Javier Sanchez-Haro ◽  
Ignacio Lombillo ◽  
Guillermo Capellan
Keyword(s):  

2021 ◽  
Vol 16 ◽  
pp. 213-219
Author(s):  
Dimitar Karastoyanov ◽  
Ivan Yatchev

The paper presents an approach to investigate the effect of different design parameters on the static “force-travel” characteristics and the magnetic field distribution of patented variants of an electromagnetic module for a Braille screen


Author(s):  
Ahmad Abdullah ◽  
Zareena Kausar ◽  
Haroon Raza ◽  
Abdullah Siddiqui ◽  
Neelum Yousaf ◽  
...  

Stability plays a vital role in any robotic system. Its significance increases in systems related to health and medicine. For rehabilitation devices meant for Spinal Cord Injury (SCI) patients, stability is crucial and key element in ensuring patient safety and the usefulness of the devices. In this study, kinematics, force analysis, and the static tip-over stability of a device for rehabilitation of paraplegic patients is discussed. Kinematics modeling and static force analysis provide critical information about position and loading at different points on the device. Force-Angle Stability Criterion is used to find the static tip-over stability of the device while the patient is on board the device. The Criterion relies on the support boundary, tip-over mode axes, and the Center of Mass (COM) of the complete system. The Criterion is sensitive to the COM position and therefore is more suitable for the application. The linear actuator mounted on the device causes the end effector of the device to move. The patient, strapped with the end effector, in turn moves from sitting position to standing position. The study focuses on the analysis of stability based on changing COM during this motion. The results verify that although the system is well within the stability bounds, it is more stable as it moves from sitting position to standing position.


2021 ◽  
Vol 52 (S2) ◽  
pp. 1067-1070
Author(s):  
Huimin Li ◽  
Anqi Li ◽  
Ying Qian ◽  
Bowei Jiang ◽  
Jinxing Luo ◽  
...  

2021 ◽  
Author(s):  
Saswath Ghosh ◽  
Deepak Kumar ◽  
Sitikantha Roy

Abstract The present study reports an amended static force model for a pneumatic muscle actuator (PMA) used in different aerodynamic and fluid power system applications. The PMA is a fluid actuator, made of a polymeric bladder enclosed in a braided mesh sleeve. A physics-based static model is developed to predict the deformation response of the actuator for different applied pressure. The significant losses, like braid-to-braid friction, non-cylindrical ends, and bladder hyperelasticity effect, have been considered to enhance the model’s practical feasibility. However, a combined effect of all these losses in the PMA was ignored in the literature. The findings of the derived model agree well with existing experimental results.


2021 ◽  
Vol 132 (4) ◽  
pp. 967-974
Author(s):  
E.G. Klaver-Krol ◽  
H.J. Hermens ◽  
R.C. Vermeulen ◽  
M.M. Klaver ◽  
H. Luyten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document