Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate

2016 ◽  
Vol 451 ◽  
pp. 507-518 ◽  
Author(s):  
Zhidong Teng ◽  
Lei Wang
2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Lei Wang ◽  
Zhidong Teng ◽  
Long Zhang

We study a class of discrete SIRS epidemic models with nonlinear incidence rateF(S)G(I)and disease-induced mortality. By using analytic techniques and constructing discrete Lyapunov functions, the global stability of disease-free equilibrium and endemic equilibrium is obtained. That is, if basic reproduction numberℛ0<1, then the disease-free equilibrium is globally asymptotically stable, and ifℛ0>1, then the model has a unique endemic equilibrium and when some additional conditions hold the endemic equilibrium also is globally asymptotically stable. By using the theory of persistence in dynamical systems, we further obtain that only whenℛ0>1, the disease in the model is permanent. Some special cases ofF(S)G(I)are discussed. Particularly, whenF(S)G(I)=βSI/(1+λI), it is obtained that the endemic equilibrium is globally asymptotically stable if and only ifℛ0>1. Furthermore, the numerical simulations show that for general incidence rateF(S)G(I)the endemic equilibrium may be globally asymptotically stable only asℛ0>1.


2013 ◽  
Vol 393 ◽  
pp. 666-674
Author(s):  
Manuel de La Sen ◽  
A. Ibeas ◽  
S. Alonso-Quesada

This paper studies a time-varyingSIS(i.e.containing susceptible and infected populations) propagation disease model exhibiting a nonlinear incidence rate and impulsive eventual culling of both populations so that the individuals recover with no immunity to the disease. The nonlinear incidence rate consists of two time-varying additive terms proportional to the susceptible and infected populations normalized to the total population.


Sign in / Sign up

Export Citation Format

Share Document