differential infectivity
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Elise K. Mullins ◽  
Thomas W. Powers ◽  
Jim Zobel ◽  
Kory M. Clawson ◽  
Lauren F. Barnes ◽  
...  

We observed differential infectivity and product yield between two recombinant chimpanzee adenovirus C68 constructs whose primary difference was genome length. To determine a possible reason for this outcome, we characterized the proportion and composition of the empty and packaged capsids. Both analytical ultracentrifugation (AUC) and differential centrifugation sedimentation (DCS, a rapid and quantitative method for measuring adenoviral packaging variants) were employed for an initial assessment of genome packaging and showed multiple species whose abundance deviated between the virus builds but not manufacturing campaigns. Identity of the packaging variants was confirmed by charge detection mass spectrometry (CDMS), the first known application of this technique to analyze adenovirus. The empty and packaged capsid populations were separated via preparative ultracentrifugation and then combined into a series of mixtures. These mixtures showed the oft-utilized denaturing A260 adenoviral particle titer method will underestimate the actual particle titer by as much as three-fold depending on the empty/full ratio. In contrast, liquid chromatography with fluorescence detection proves to be a superior viral particle titer methodology.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009469
Author(s):  
Tiffany King ◽  
Asuncion Mejias ◽  
Octavio Ramilo ◽  
Mark E. Peeples

Respiratory syncytial virus (RSV) infects the upper and lower respiratory tracts and can cause lower respiratory tract infections in children and elders. RSV has traditionally been isolated, grown, studied and quantified in immortalized cell lines, most frequently HEp-2 cells. However, in vivo RSV infection is modeled more accurately in primary well differentiated human bronchial epithelial (HBE) cultures where RSV targets the ciliated cells and where the putative RSV receptor differs from the receptor on HEp-2 cells. The RSV attachment (G) glycoprotein in virions produced by HEp-2 cells is a highly glycosylated 95 kDa protein with a 32 kDa peptide core. However, virions produced in HBE cultures, RSV (HBE), contain an even larger, 170 kDa, G protein (LgG). Here we show that LgG is found in virions from both subgroups A and B lab-adapted and clinical isolates. Unexpectedly, RSV (HBE) virions were approximately 100-fold more infectious for HBE cultures than for HEp-2 cells. Surprisingly, the cause of this differential infectivity, was reduced infectivity of RSV (HBE) on HEp-2 cells rather than enhanced infectivity on HBE cultures. The lower infectivity of RSV(HBE) for HEp-2 cells is caused by the reduced ability of LgG to interact with heparan sulfate proteoglycans (HSPG), the RSV receptor on HEp-2 cells. The discovery of different infectivity corresponding with the larger form of the RSV attachment protein when produced by HBE cultures highlights the importance of studying a virus produced by its native host cell and the potential impact on quantifying virus infectivity on cell lines where the virus entry mechanisms differ from their natural target cell.


Author(s):  
Alona Kuzmina ◽  
Yara Khalaila ◽  
Olga Voloshin ◽  
Ayelet Keren-Naus ◽  
Liora Bohehm ◽  
...  

2021 ◽  
Author(s):  
Alona Kuzmina ◽  
Yara Khalaila ◽  
Olga Voloshin ◽  
Ayelet Keren-Naus ◽  
Liora Bohehm ◽  
...  

SUMMARYTowards eradicating COVID19, developing vaccines that induce high levels of neutralizing antibodies is a main goal. As counter measurements, viral escape mutants rapidly emerge and potentially compromise vaccine efficiency. Herein we monitored ability of convalescent or Pfizer-BTN162b2 post-vaccination sera to neutralize wide-type SARS-CoV2 or its UK-B.1.1.7 and SA-B.1.351 variants. Relative to convalescent sera, post-vaccination sera exhibited higher levels of neutralizing antibodies against wild-type or mutated viruses. However, while SARS-CoV2 wild-type and UK-N501Y were similarly neutralized by tested sera, the SA-N501Y/K417N/E484K variant moderately escaped neutralization. Significant contribution to infectivity and sensitivity to neutralization was attributed to each of the variants and their single or combined mutations, highlighting alternative mechanisms by which prevalent variants with either N501Y or E484K/K417N mutations spread. Our study validates the clinical significance of currently administered vaccines, but emphasizes that their efficacy may be compromised by circulated variants, urging the development of new ones with broader neutralization functions.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Ruben Michael Ceballos ◽  
Carson Stacy ◽  
Coyne Drummond ◽  
Yeasin Ahmed ◽  
Samia Parveen ◽  
...  

The Sulfolobus Spindle-shaped Virus (SSV) system is a model for studying thermophilic archaeal virus biology. Several factors make the SSV system amenable to studying archaeal genetics and virus-host interactions in extreme environments. It has been shown that populations of Sulfolobus, the natural host, exhibit biogeographic structure. The acidic (pH<4.5) high temperature (65-88°C) habitats have low biodiversity, which diminishes prospects for host switch. SSVs and their hosts are readily cultured in liquid media and on plates. Given the wide geographic separation between various SSV-Sulfolobus habitats, the system is also amenable to studying allopatric versus sympatric virus-host interactions. We previously reported that SSVs exhibit differential infectivity on allopatric and sympatric hosts. We discovered a strikingly broad host-range for strain SSV9 (a.k.a., SSVK1). For decades, SSVs have been described as “non-lytic” dsDNA viruses that infect species of Sulfolobus and release virus particles via blebbing as a preferred strategy over host lysis (in reported laboratory infections). Here, we show, that SSVs infect more than one genus of the family Sulfolobaceae and, in allopatric hosts, SSV9 does not release virions via blebbing. Instead, SSV9 appears to lyse all susceptible allopatric hosts, while exhibiting canonical non-lytic virion release (historically reported for SSVs) on a single sympatric host. Lytic versus non-lytic virus release does not appear to be driven by multiplicity of infection. Data suggest that SSV9 is more stable than other SSVs in suspension; however, genetic substrates (e.g., CRISPR profiles) underlying non-lytic versus lytic virion release remain unresolved and are the subject of ongoing investigation.


2020 ◽  
Vol 62 (3) ◽  
pp. 354-363 ◽  
Author(s):  
Jennifer R. Honda ◽  
Tamara Hess ◽  
Rachel Carlson ◽  
Pitchaimani Kandasamy ◽  
Luisa Maria Nieto Ramirez ◽  
...  

2020 ◽  
Vol 25 (6) ◽  
pp. 2293-2306
Author(s):  
Mboya Ba ◽  
◽  
P. Tchinda Mouofo ◽  
Mountaga Lam ◽  
Jean-Jules Tewa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document