Finite-time event-triggered synchronization for reaction–diffusion complex networks

2018 ◽  
Vol 509 ◽  
pp. 111-120 ◽  
Author(s):  
Aijuan Wang ◽  
Xiaofeng Liao ◽  
Tao Dong
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Tiane Chen ◽  
Zaihe Cheng

This study addresses the problem of output quasisynchronization for coupled complex-valued memristive reaction-diffusion complex networks via the distributed event-triggered control scheme. First, by using the separate method, set value mapping, and intermediate value theorem, the complex-valued memristive reaction-diffusion complex networks can be transferred into two semi-uncertain real-valued reaction-diffusion complex networks. Second, a distributed output piecewise event-triggered control (OPETC) scheme with spatial sampled-data is first proposed including a spatial sampling event-triggered generator and spatiotemporal sampling state feedback controller. Furthermore, this scheme can effectively save the measurement resources and lower the update rate of controllers in spatial and time domain. Third, the synchronization analysis is considered by utilizing an appropriate Lyapunov function, the Halanay inequality, and the improved Wirtinger inequality. Subsequently, several output event-triggered quasisynchronization criteria are derived. The relations among event trigger conditions, spatial sampling interval, convergence rate, and control gain are given by rigorous mathematical derivation. Finally, multiple simulations are compared to substantiate the validation of the OPETC scheme.


Sign in / Sign up

Export Citation Format

Share Document