scholarly journals Continuous time random walk and diffusion with generalized fractional Poisson process

2020 ◽  
Vol 545 ◽  
pp. 123294 ◽  
Author(s):  
Thomas M. Michelitsch ◽  
Alejandro P. Riascos
2019 ◽  
Vol 68 (13) ◽  
pp. 130501
Author(s):  
Xiao-Rong Yang ◽  
Qiong Wang ◽  
Tang-Jin Ye ◽  
Ci-Ren Tudeng

2013 ◽  
Vol 27 (12) ◽  
pp. 1330006 ◽  
Author(s):  
KWOK SAU FA ◽  
K. G. WANG

The continuous-time random walk (CTRW) model is a useful tool for the description of diffusion in nonequilibrium systems, which is broadly applied in nature and life sciences, e.g., from biophysics to geosciences. In particular, the integro-differential equations for diffusion and diffusion-advection are derived asymptotically from the decoupled CTRW model and a generalized Chapmann–Kolmogorov equation, with generic waiting time probability density function (PDF) and external force. The advantage of the integro-differential equations is that they can be used to investigate the entire diffusion process i.e., covering initial-, intermediate- and long-time ranges of the process. Therefore, this method can distinguish the evolution detail for a system having the same behavior in the long-time limit but with different initial- and intermediate-time behaviors. An integro-differential equation for diffusion-advection is also presented for the description of the subdiffusive and superdiffusive regime. Moreover, the methods of solving the integro-differential equations are developed, and the analytic solutions for PDFs are obtained for the cases of force-free and linear force.


2020 ◽  
Vol 23 (3) ◽  
pp. 656-693 ◽  
Author(s):  
Thomas M. Michelitsch ◽  
Alejandro P. Riascos

AbstractWe survey the ‘generalized fractional Poisson process’ (GFPP). The GFPP is a renewal process generalizing Laskin’s fractional Poisson counting process and was first introduced by Cahoy and Polito. The GFPP contains two index parameters with admissible ranges 0 < β ≤ 1, α > 0 and a parameter characterizing the time scale. The GFPP involves Prabhakar generalized Mittag-Leffler functions and contains for special choices of the parameters the Laskin fractional Poisson process, the Erlang process and the standard Poisson process. We demonstrate this by means of explicit formulas. We develop the Montroll-Weiss continuous-time random walk (CTRW) for the GFPP on undirected networks which has Prabhakar distributed waiting times between the jumps of the walker. For this walk, we derive a generalized fractional Kolmogorov-Feller equation which involves Prabhakar generalized fractional operators governing the stochastic motions on the network. We analyze in d dimensions the ‘well-scaled’ diffusion limit and obtain a fractional diffusion equation which is of the same type as for a walk with Mittag-Leffler distributed waiting times. The GFPP has the potential to capture various aspects in the dynamics of certain complex systems.


2021 ◽  
Vol 34 (4) ◽  
Author(s):  
M. Muge Karaman ◽  
Jiaxuan Zhang ◽  
Karen L. Xie ◽  
Wenzhen Zhu ◽  
Xiaohong Joe Zhou

2017 ◽  
Author(s):  
Kang Kang ◽  
Elsayed Abdelfatah ◽  
Maysam Pournik ◽  
Bor Jier Shiau ◽  
Jeffrey Harwell

Sign in / Sign up

Export Citation Format

Share Document