high b value
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 65)

H-INDEX

39
(FIVE YEARS 3)

NeuroImage ◽  
2021 ◽  
pp. 118866
Author(s):  
Ezequiel Gleichgerrcht ◽  
Simon S. Keller ◽  
Lorna Bryant ◽  
Hunter Moss ◽  
Tanja S. Kellermann ◽  
...  

2021 ◽  
Author(s):  
Christof Mittermair ◽  
Teresa Margarida Cunha ◽  
Romana Urbas ◽  
Horst Koch ◽  
Rosemarie Forstner

Sclerosing stromal tumor of the ovary is a rare benign sex-cord stromal tumor that affects primarily young females. In a series of 6 patients (mean 24,6, median 19 years) findings of 6 MRIs and 1 CT were analyzed. Unilateral tumors ranging from 6 to 8 cm were found in all patients. The tumors were well encapsulated and polylobulated. The morphology was mixed solid and cystic in three and solid in 3 patients. In CT, a hypervascular tumor with centripetal enhancement was seen. In MRI T2WI showed low signal intensity of the solid tissue in all cases and low DWI signal of the solid tissue in high b value DWI in 3 patients. Contrast enhancement was avid with extension from the periphery in all patients. Knowledge of these distinct radiological features of sclerosing stromal tumor is important, as in the O-RADS risk classification system this may be scored as O-RADS 5. Because of its non-aggressive clinical course, preoperative imaging assists to avoid unnecessary extensive surgery and to preserve the patient’s fertility by only resecting the tumor and preserving the ovary. Sclerosing stromal tumor of the ovary presents pathognomonic features in MRI that allow a specific preoperative diagnosis and selecting candidates for fertility-sparing surgery.


2021 ◽  
Vol 10 (22) ◽  
pp. 5289
Author(s):  
Maxime Ablefoni ◽  
Hans Surup ◽  
Constantin Ehrengut ◽  
Aaron Schindler ◽  
Daniel Seehofer ◽  
...  

Diffusion-weighted imaging (DWI) has rapidly become an essential tool for the detection of malignant liver lesions. The aim of this study was to investigate the usefulness of high b-value computed DWI (c-DWI) in comparison to standard DWI in patients with hepatic metastases. In total, 92 patients with histopathologic confirmed primary tumors with hepatic metastasis were retrospectively analyzed by two readers. DWI was obtained with b-values of 50, 400 and 800 or 1000 s/mm2 on a 1.5 T magnetic resonance imaging (MRI) scanner. C-DWI was calculated with a monoexponential model with high b-values of 1000, 2000, 3000, 4000 and 5000 s/mm2. All c-DWI images with high b-values were compared to the acquired DWI sequence at a b-value of 800 or 1000 s/mm2 in terms of volume, lesion detectability and image quality. In the group of a b-value of 800 from a b-value of 2000 s/mm2, hepatic lesion sizes were significantly smaller than on acquired DWI (metastases lesion sizes b = 800 vs. b 2000 s/mm2: mean 25 cm3 (range 10–60 cm3) vs. mean 17.5 cm3 (range 5–35 cm3), p < 0.01). In the second group at a high b-value of 1500 s/mm2, liver metastases were larger than on c-DWI at higher b-values (b = 1500 vs. b 2000 s/mm2, mean 10 cm3 (range 4–24 cm3) vs. mean 9 cm3 (range 5–19 cm3), p < 0.01). In both groups, there was a clear reduction in lesion detectability at b = 2000 s/mm2, with hepatic metastases being less visible compared to c-DWI images at b = 1500 s/mm2 in at least 80% of all patients. Image quality dropped significantly starting from c-DWI at b = 3000 s/mm2. In both groups, almost all high b-values images at b = 4000 s/mm2 and 5000 s/mm2 were not diagnostic due to poor image quality. High c-DWI b-values up to b = 1500 s/mm2 offer comparable detectability for hepatic metastases compared to standard DWI. Higher b-value images over 2000 s/mm2 lead to a noticeable reduction in imaging quality, which could hamper diagnosis.


Author(s):  
M. Boschheidgen ◽  
L. Schimmöller ◽  
C. Arsov ◽  
F. Ziayee ◽  
J. Morawitz ◽  
...  

Abstract Objectives T o evaluate the value of multiparametric MRI (mpMRI) for the prediction of prostate cancer (PCA) aggressiveness. Methods In this single center cohort study, consecutive patients with histologically confirmed PCA were retrospectively enrolled. Four different ISUP grade groups (1, 2, 3, 4–5) were defined and fifty patients per group were included. Several clinical (age, PSA, PSAD, percentage of PCA infiltration) and mpMRI parameters (ADC value, signal increase on high b-value images, diameter, extraprostatic extension [EPE], cross-zonal growth) were evaluated and correlated within the four groups. Based on combined descriptors, MRI grading groups (mG1–mG3) were defined to predict PCA aggressiveness. Results In total, 200 patients (mean age 68 years, median PSA value 8.1 ng/ml) were analyzed. Between the four groups, statistically significant differences could be shown for age, PSA, PSAD, and for MRI parameters cross-zonal growth, high b-value signal increase, EPE, and ADC (p < 0.01). All examined parameters revealed a significant correlation with the histopathologic biopsy ISUP grade groups (p < 0.01), except PCA diameter (p = 0.09). A mixed linear model demonstrated the strongest prediction of the respective ISUP grade group for the MRI grading system (p < 0.01) compared to single parameters. Conclusions MpMRI yields relevant pre-biopsy information about PCA aggressiveness. A combination of quantitative and qualitative parameters (MRI grading groups) provided the best prediction of the biopsy ISUP grade group and may improve clinical pathway and treatment planning, adding useful information beyond PI-RADS assessment category. Due to the high prevalence of higher grade PCA in patients within mG3, an early re-biopsy seems indicated in cases of negative or post-biopsy low-grade PCA. Key Points • MpMRI yields relevant pre-biopsy information about prostate cancer aggressiveness. • MRI grading in addition to PI-RADS classification seems to be helpful for a size independent early prediction of clinically significant PCA. • MRI grading groups may help urologists in clinical pathway and treatment planning, especially when to consider an early re-biopsy.


2021 ◽  
pp. 20210465
Author(s):  
Tsutomu Tamada ◽  
Ayumu Kido ◽  
Yu Ueda ◽  
Mitsuru Takeuchi ◽  
Takeshi Fukunaga ◽  
...  

Objective: High b-value diffusion-weighted imaging (hDWI) with a b-value of 2000 s/mm2 provides insufficient image contrast between benign and malignant tissues and an overlap of apparent diffusion coefficient (ADC) between Gleason grades (GG) in prostate cancer (PC). We compared image quality, PC detectability, and discrimination ability for PC aggressiveness between ultra-high b-value DWI (uhDWI) of 3000 s/mm2 and hDWI. Methods: The subjects were 49 patients with PC who underwent 3T multiparametric MRI. Single-shot echo-planar DWI was acquired with b-values of 0, 2000, and 3000 s/mm2. Anatomical distortion of prostate (AD), signal intensity of benign prostate (PSI), and lesion conspicuity score (LCS) were assessed using a 4-point scale; and signal-to-noise ratio, contrast-to-noise ratio, and mean ADC (×10–3 mm2/s) of lesion (lADC) and surrounding benign region (bADC) were measured. Results: PSI was significantly lower in uhDWI than in hDWI (p < 0.001). AD, LCS, signal-to-noise ratio, and contrast-to-noise ratio were comparable between uhDWI and hDWI (all p > 0.05). In contrast, lADC was significantly lower than bADC in both uhDWI and hDWI (both p < 0.001). In comparison of lADC between tumors of ≤GG2 and those of ≥GG3, both uhDWI and hDWI showed significant difference (p = 0.007 and p = 0.021, respectively). AUC for separating tumors of ≤GG2 from those of ≥GG3 was 0.731 in hDWI and 0.699 in uhDWI (p = 0.161). Conclusion: uhDWI suppressed background signal better than hDWI, but did not contribute to increased diagnostic performance in PC. Advances in knowledge: Compared with hDWI, uhDWI could not contribute to increased diagnostic performance in PC.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257545
Author(s):  
Harri Merisaari ◽  
Christian Federau

Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coefficient, which might hinder its potential broader use in clinical applications. Therefore, we studied the conditions to produce optimal IVIM perfusion images in the brain. IVIM imaging was performed on a 3-Tesla clinical system in four healthy volunteers, with 16 b values 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm2, repeated 20 times. We analyzed the noise characteristics of the trace images as a function of b-value, and the homogeneity of the IVIM parameter maps across number of averages and sub-sets of the acquired b values. We found two peaks of noise of the trace images as function of b value, one due to thermal noise at high b-value, and one due to physiological noise at low b-value. The selection of b value distribution was found to have higher impact on the homogeneity of the IVIM parameter maps than the number of averages. Based on evaluations, we suggest an optimal b value acquisition scheme for a 12 min scan as 0 (7), 20 (4), 140 (19), 300 (9), 500 (19), 700 (1), 800 (4), 900 (1) s/mm2.


2021 ◽  
pp. 20210509
Author(s):  
Chau Hung Lee ◽  
Balamurugan Vellayappan ◽  
Cher Heng Tan

Objectives: To perform a systematic review and meta-analysis comparing diagnostic performance and inter reader agreement between PI-RADS v. 2.1 and PI-RADS v. 2 in the detection of clinically significant prostate cancer (csPCa). Methods: A systematic review was performed, searching the major biomedical databases (Medline, Embase, Scopus), using the keywords “PIRADS 2.1” or “PI RADS 2.1” or “PI-RADS 2.1”. Studies reporting on head-to-head diagnostic comparison between PI-RADS v. 2.1 and v. 2 were included. Pooled sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were compared between PI-RADS v. 2.1 and v. 2. Summary receiver operator characteristic graphs were plotted. Analysis was performed for whole gland, and pre-planned subgroup analysis was performed by tumour location (whole gland vs transition zone (TZ)), high b-value DWI (b-value ≥1400 s/mm2), and reader experience (<5 years vs ≥5 years with prostate MRI interpretation). Inter-reader agreement and pooled rates of csPCa for PI-RADS 1–3 lesions were compared between PI-RADS v. 2.1 and v. 2. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool v. 2 (QUADAS-2). Results: Eight studies (1836 patients, 1921 lesions) were included. Pooled specificity for PI-RADS v. 2.1 was significantly lower than PI-RADS v. 2 for whole gland (0.62 vs 0.66, p = 0.02). Pooled sensitivities, PPVs and NPVs were not significantly different (p = 0.17, 0.31, 0.41). Pooled specificity for PI-RADS v. 2.1 was significantly lower than PI-RADS v. 2 for TZ only (0.67 vs 0.72, p = 0.01). Pooled sensitivities, PPVs and NPVs were not significantly different (p = 0.06, 0.36, 0.17). Amongst studies utilising diffusion-weighted imaging with highest b-value of ≥1400 s/mm2, pooled sensitivities, specificities, PPVs and NPVs were not significantly different (p = 0.52, 0.4, 0.5, 0.47). There were no significant differences in pooled sensitivities, specificities, PPVs and NPVs between PI-RADS v. 2.1 and PI-RADS v. 2 for less-experienced readers (p = 0.65, 0.37, 0.65, 0.81) and for more experienced readers (p = 0.57, 0.90, 0.91, 0.65). For PI-RADS v. 2.1 alone, there were no significant differences in pooled sensitivity, specificity, PPV and NPV between less and more experienced readers (p = 0.38, 0.70, 1, 0.48). Inter-reader agreement was moderate to substantial for both PI-RADS v. 2.1 and v. 2. There were no significant differences between pooled csPCa rates between PI-RADS v. 2.1 and v. 2 for PI-RADS 1–2 lesions (6.6% vs  7.3%, p = 0.53), or PI-RADS 3 lesions (24.1% vs  26.8%, p = 0.28). Conclusions: Diagnostic performance and inter-reader agreement for PI-RADS v. 2.1 is comparable to PI-RADS v. 2, however the significantly lower specificity of PI-RADS v. 2.1 may result in increased number of unnecessary biopsies. Advances in knowledge: 1. Compared to PI-RADS v. 2, PI-RADS v. 2.1 has a non-significantly higher sensitivity but a significantly lower specificity for detection of clinically significant prostate cancer. 2. PI-RADS v. 2.1 could potentially result in considerable increase in number of negative targeted biopsy rates for PI-RADS 3 lesions, which could have been potentially avoided.


2021 ◽  
Author(s):  
Tianxiu Zheng ◽  
Qiuyan Chen ◽  
Yanhua Qiu ◽  
Deyong Zhang ◽  
Liwei Shi ◽  
...  

Abstract To evaluate the diagnostic value of multi-ultra high b-value diffusion-weighted imaging (UHBV-DWI) in Alzheimer’s disease (AD), and to build a regression prediction modelfor AD.90 participants including 30 AD, 30 mild cognitive impairments (MCI) and 30 volunteers without neurological diseases were enrolled to perform with hippocampal volume, white matter hyperintensities volume (WMH volume), periventricular white matter hyperintensity (PVWMH) score, deep white matter hyperintensity (DWMH) score and UHBV-DWI.We found UHBV-DWI outperformed in the diagnosis of AD (AUC = 0.858), and multiple linear regression model: y = 0.515 + 0.018 *(WMH volume) + 0.221 *(ADCuh value)-0.359 *(left hippocampus volume) were established.So we came to a conclusion: UHBV-DWI is helpful for diagnosing AD, and the combination of WMH volume and left hippocampus volume has a better diagnostic performance.


2021 ◽  
Vol 10 (16) ◽  
pp. 3451
Author(s):  
Nils C. Nuessle ◽  
Felix Behling ◽  
Ghazaleh Tabatabai ◽  
Salvador Castaneda Vega ◽  
Jens Schittenhelm ◽  
...  

Purpose: To investigate the diagnostic performance of in vivo ADC-based stratification of integrated molecular glioma grades. Materials and methods: Ninety-seven patients with histopathologically confirmed glioma were evaluated retrospectively. All patients underwent pre-interventional MRI-examination including diffusion-weighted imaging (DWI) with implemented b-values of 500, 1000, 1500, 2000, and 2500 s/mm2. Apparent Diffusion Coefficient (ADC), Mean Kurtosis (MK), and Mean Diffusivity (MD) maps were generated. The average values were compared among the molecular glioma subgroups of IDH-mutant and IDH-wildtype astrocytoma, and 1p/19q-codeleted oligodendroglioma. One-way ANOVA with post-hoc Games-Howell correction compared average ADC, MD, and MK values between molecular glioma groups. A Receiver Operating Characteristic (ROC) analysis determined the area under the curve (AUC). Results: Two b-value-dependent ADC-based evaluations presented statistically significant differences between the three molecular glioma sub-groups (p < 0.001, respectively). Conclusions: High-b-value ADC from preoperative DWI may be used to stratify integrated molecular glioma subgroups and save time compared to diffusion kurtosis imaging. Higher b-values of up to 2500 s/mm2 may present an important step towards increasing diagnostic accuracy compared to standard DWI protocol.


Sign in / Sign up

Export Citation Format

Share Document