DCFS-based deep learning supervisory control for modeling lane keeping of expert drivers

2021 ◽  
Vol 567 ◽  
pp. 125720
Author(s):  
Jin Chen ◽  
Dihua Sun ◽  
Min Zhao ◽  
Yang Li ◽  
Zhongcheng Liu
2020 ◽  
Vol 12 (5) ◽  
pp. 15-27
Author(s):  
Fenjiro Youssef ◽  
◽  
Benbrahim Houda

Self-driving car is one of the most amazing applications and most active research of artificial intelligence. It uses end-to-end deep learning models to take orientation and speed decisions, using mainly Convolutional Neural Networks for computer vision, plugged to a fully connected network to output control commands. In this paper, we introduce the Self-driving car domain and the CARLA simulation environment with a focus on the lane-keeping task, then we present the two main end-to-end models, used to solve this problematic, beginning by Deep imitation learning (IL) and specifically the Conditional Imitation Learning (COIL) algorithm, that learns through expert labeled demonstrations, trying to mimic their behaviors, and thereafter, describing Deep Reinforcement Learning (DRL), and precisely DQN and DDPG (respectively Deep Q learning and deep deterministic policy gradient), that uses the concepts of learning by trial and error, while adopting the Markovian decision processes (MDP), to get the best policy for the driver agent. In the last chapter, we compare the two algorithms IL and DRL based on a new approach, with metrics used in deep learning (Loss during training phase) and Self-driving car (the episode's duration before a crash and Average distance from the road center during the testing phase). The results of the training and testing on CARLA simulator reveals that the IL algorithm performs better than DRL algorithm when the agents are already trained on a given circuit, but DRL agents show better adaptability when they are on new roads.


Author(s):  
Stellan Ohlsson
Keyword(s):  

2012 ◽  
Author(s):  
Andrew S. Clare ◽  
Jason C. Ryan ◽  
Kimberly F. Jackson ◽  
M. L. Cummings

2011 ◽  
Author(s):  
Daniel Gartenberg ◽  
Malcolm McCurry ◽  
Greg Trafton

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


Sign in / Sign up

Export Citation Format

Share Document