unmanned systems
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 109)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 2146 (1) ◽  
pp. 012021
Author(s):  
Shanshan Li ◽  
Liang Zhang ◽  
Zongpu Li

Abstract In modern science and technology, artificial intelligence has become one of the most important and promising technologies in today’s society and plays a very important role in people’s life. In artificial intelligence, cooperation is a very important research direction, which includes the cooperation between sensors, coordinated man-machine interface and actuators on multiple UAVs. Therefore, based on the exploration of artificial intelligence security, this paper studies artificial intelligence in multi unmanned system cooperation. Firstly, this paper expounds the development of cooperative system, and then describes the purpose of multi unmanned system cooperation. Then, this paper studies the intelligent algorithm applied to the cooperation of multiple unmanned systems in the field of artificial intelligence. Finally, aiming at the existing security problems of artificial intelligence, this paper tests the functions of multiple unmanned systems. The test results show that when multiple unmanned systems work together, the accuracy of artificial intelligence in dealing with things is basically more than 90%. At the same time, it can be nearly 100% scientific, and can budget a variety of treatment schemes. This shows that in the multi unmanned system cooperation, artificial intelligence can almost meet its needs, but it still needs to be further improved.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Erxin Gao ◽  
Xin Ning ◽  
Zheng Wang ◽  
Xiaokui Yue

This paper investigates the antidisturbance formation control problem for a class of cluster aerospace unmanned systems (CAUSs) suffering from multisource high-dynamic uncertainties. Firstly, to estimate and compensate the uncertainties existing in CAUS coordinate dynamics, an adaptive antidisturbance formation control law, which is combined by a robust adaptive control law and the second order disturbance observer, has been designed. Secondly, aiming at the adverse influences caused by the nonlinear time-varying nonlinearities existing in the formation flight dynamics, the radial basis function neural network (RBFNN) is introduced. Furthermore, considering the rapidly varying characteristics of the aforementioned formation flight nonlinearities, a novel board RBFNN (B-RBFNN) has been constructed and utilized to improve the approximation and compensation performance. In virtue of the fusing of the B-RBFNN and the second-order disturbance observer-based adaptive formation control law, the rapid response rate and the higher control accuracy of the formation control system can be achieved. As a result, a novel B-RBFNN-based intelligence adaptive antidisturbance formation control algorithm has been established for CAUS trajectory coordination and formation flight. Numerical simulation results are proposed to illustrate the effectiveness and advantages of the proposed B-RBFNN-based intelligent adaptive formation control method for the CAUS.


Author(s):  
Martina Mammarella ◽  
Lorenzo Comba ◽  
Alessandro Biglia ◽  
Fabrizio Dabbene ◽  
Paolo Gay

Author(s):  
Martina Mammarella ◽  
Lorenzo Comba ◽  
Alessandro Biglia ◽  
Fabrizio Dabbene ◽  
Paolo Gay

Sign in / Sign up

Export Citation Format

Share Document