Coarsening of step bunches in step flow growth: a reaction–diffusion model and its travelling wave solutions

2004 ◽  
Vol 189 (3-4) ◽  
pp. 287-316
Author(s):  
Cameron R. Connell
2017 ◽  
Vol 1 ◽  
pp. 1 ◽  
Author(s):  
Valaire Yatat ◽  
Yves Dumont

This paper deals with the problem of travelling wave solutions in a scalar impulsive FKPP-like equation. It is a first step of a more general study that aims to address existence of travelling wave solutions for systems of impulsive reaction-diffusion equations that model ecological systems dynamics such as fire-prone savannas. Using results on scalar recursion equations, we show existence of populated vs. extinction travelling waves invasion and compute an explicit expression of their spreading speed (characterized as the minimal speed of such travelling waves). In particular, we find that the spreading speed explicitly depends on the time between two successive impulses. In addition, we carry out a comparison with the case of time-continuous events. We also show that depending on the time between two successive impulses, the spreading speed with pulse events could be lower, equal or greater than the spreading speed in the case of time-continuous events. Finally, we apply our results to a model of fire-prone grasslands and show that pulse fires event may slow down the grassland vs. bare soil invasion speed.


Author(s):  
Shangbing Ai ◽  
Wenzhang Huang

The existence and uniqueness of travelling-wave solutions is investigated for a system of two reaction–diffusion equations where one diffusion constant vanishes. The system arises in population dynamics and epidemiology. Travelling-wave solutions satisfy a three-dimensional system about (u, u′, ν), whose equilibria lie on the u-axis. Our main result shows that, given any wave speed c > 0, the unstable manifold at any point (a, 0, 0) on the u-axis, where a ∈ (0, γ) and γ is a positive number, provides a travelling-wave solution connecting another point (b, 0, 0) on the u-axis, where b:= b(a) ∈ (γ, ∞), and furthermore, b(·): (0, γ) → (γ, ∞) is continuous and bijective


1994 ◽  
Vol 5 (3) ◽  
pp. 255-265 ◽  
Author(s):  
John Chadam ◽  
Xinfu Chen ◽  
Elena Comparini ◽  
Riccardo Ricci

We consider travelling wave solutions of a reaction–diffusion system arising in a model for infiltration with changing porosity due to reaction. We show that the travelling wave solution exists, and is unique modulo translations. A small parameter ε appears in this problem. The formal limit as ε → 0 is a free boundary problem. We show that the solution for ε > 0 tends, in a suitable norm, to the solution of the formal limit.


Author(s):  
Teresa Faria ◽  
Wenzhang Huang ◽  
Jianhong Wu

We develop a new approach to obtain the existence of travelling wave solutions for reaction–diffusion equations with delayed non-local response. The approach is based on an abstract formulation of the wave profile as a solution of an operational equation in a certain Banach space, coupled with an index formula of the associated Fredholm operator and some careful estimation of the nonlinear perturbation. The general result relates the existence of travelling wave solutions to the existence of heteroclinic connecting orbits of a corresponding functional differential equation, and this result is illustrated by an application to a model describing the population growth when the species has two age classes and the diffusion of the individual during the maturation process leads to an interesting non-local and delayed response for the matured population.


2007 ◽  
Vol 18 (5) ◽  
pp. 583-605 ◽  
Author(s):  
D. HILHORST ◽  
J. R. KING ◽  
M. RÖGER

We study travelling-wave solutions for a reaction-diffusion system arising as a model for host-tissue degradation by bacteria. This system consists of a parabolic equation coupled with an ordinary differential equation. For large values of the ‘degradation-rate parameter’ solutions are well approximated by solutions of a Stefan-like free boundary problem, for which travelling-wave solutions can be found explicitly. Our aim is to prove the existence of travelling waves for all sufficiently large wave speeds for the original reaction-diffusion system and to determine the minimal speed. We prove that for all sufficiently large degradation rates, the minimal speed is identical to the minimal speed of the limit problem. In particular, in this parameter range,non-linearselection of the minimal speed occurs.


Sign in / Sign up

Export Citation Format

Share Document