Tibialis anterior muscle coherence during cycling as new functional measure for incomplete spinal cord injury in clinical evaluation

Physiotherapy ◽  
2016 ◽  
Vol 102 ◽  
pp. e97
Author(s):  
E. Bravo-Esteban ◽  
J. Gomez-Soriano ◽  
F. Barroso ◽  
S. Piazza ◽  
D. Torricelli ◽  
...  
2017 ◽  
Vol 49 (5S) ◽  
pp. 76
Author(s):  
Heontae Kim ◽  
Don W. Morgan ◽  
Sandra L. Stevens ◽  
John M. Coons ◽  
Minsoo Kang

Spinal Cord ◽  
2008 ◽  
Vol 46 (10) ◽  
pp. 696-702 ◽  
Author(s):  
G-X Xiong ◽  
J-W Zhang ◽  
Y Hong ◽  
Y Guan ◽  
H Guan

2018 ◽  
Vol 120 (6) ◽  
pp. 2745-2760 ◽  
Author(s):  
Aiko K. Thompson ◽  
Rachel H. Cote ◽  
Janice M. Sniffen ◽  
Jodi A. Brangaccio

The activity of corticospinal pathways is important in movement control, and its plasticity is essential for motor skill learning and re-learning after central nervous system (CNS) injuries. Therefore, enhancing the corticospinal function may improve motor function recovery after CNS injuries. Operant conditioning of stimulus-induced muscle responses (e.g., reflexes) is known to induce the targeted plasticity in a targeted pathway. Thus, an operant conditioning protocol to target the corticospinal pathways may be able to enhance the corticospinal function. To test this possibility, we investigated whether operant conditioning of the tibialis anterior (TA) motor evoked potential (MEP) to transcranial magnetic stimulation can enhance corticospinal excitability in people with and without chronic incomplete spinal cord injury (SCI). The protocol consisted of 6 baseline and 24 up-conditioning/control sessions over 10 wk. In all sessions, TA MEPs were elicited at 10% above active MEP threshold while the sitting participant provided a fixed preset level of TA background electromyographic activity. During baseline sessions, MEPs were simply measured. During conditioning trials of the conditioning sessions, the participant was encouraged to increase MEP and was given immediate feedback indicating whether MEP size was above a criterion. In 5/8 participants without SCI and 9/10 with SCI, over 24 up-conditioning sessions, MEP size increased significantly to ~150% of the baseline value, whereas the silent period (SP) duration decreased by ~20%. In a control group of participants without SCI, neither MEP nor SP changed. These results indicate that MEP up-conditioning can facilitate corticospinal excitation, which is essential for enhancing motor function recovery after SCI. NEW & NOTEWORTHY We investigated whether operant conditioning of the motor evoked potential (MEP) to transcranial magnetic stimulation can systematically increase corticospinal excitability for the ankle dorsiflexor tibialis anterior (TA) in people with and without chronic incomplete spinal cord injury. We found that up-conditioning can increase the TA MEP while reducing the accompanying silent period (SP) duration. These findings suggest that MEP up-conditioning produces the facilitation of corticospinal excitation as targeted, whereas it suppresses inhibitory mechanisms reflected in SP.


Author(s):  
Akbar Hojjati Najafabadi ◽  
Saeid Amini ◽  
Farzam Farahmand

The majority of the people with incomplete spinal cord injury lose their walking ability, due to the weakness of their muscle motors in providing torque. As a result, developing assistive devices to improve their conditionis of great importance. In this study, a combined application of the saddle-assistive device (S-AD) and mechanical medial linkage or thosis was evaluated to improve the walking ability in patients with spinal cord injury in the gait laboratory. This mobile assistive device is called the saddle-assistive device equipped with medial linkage or thosis (S-ADEM). In this device, a mechanical orthosis was used in a wheeled walker as previously done in the literature. Initially, for evaluation of the proposed assistive device, the experimental results related to the forces and torques exerted on the feet and upper limbs of a person with the incomplete Spinal Cord Injury (SCI) during walking usingthe standard walker were compared with an those obtained from using the S-ADEM on an able-bodied subject. It was found that using this combination of assistive devices decreases the vertical force and torque on the foot at the time of walking by 53% and 48%, respectively compared to a standard walker. Moreover, the hand-reaction force on the upper limb was negligible instanding and walking positions usingthe introduced device. The findings of this study revealed that the walking ability of the patients with incomplete SCI was improved using the proposed device, which is due to the bodyweight support and the motion technology used in it.


Sign in / Sign up

Export Citation Format

Share Document