Frontiers in Neurorobotics
Latest Publications


TOTAL DOCUMENTS

691
(FIVE YEARS 410)

H-INDEX

29
(FIVE YEARS 8)

Published By Frontiers Media Sa

1662-5218

2022 ◽  
Vol 15 ◽  
Author(s):  
Jinsheng Yuan ◽  
Wei Guo ◽  
Fusheng Zha ◽  
Pengfei Wang ◽  
Mantian Li ◽  
...  

The hippocampus and its accessory are the main areas for spatial cognition. It can integrate paths and form environmental cognition based on motion information and then realize positioning and navigation. Learning from the hippocampus mechanism is a crucial way forward for research in robot perception, so it is crucial to building a calculation method that conforms to the biological principle. In addition, it should be easy to implement on a robot. This paper proposes a bionic cognition model and method for mobile robots, which can realize precise path integration and cognition of space. Our research can provide the basis for the cognition of the environment and autonomous navigation for bionic robots.


2022 ◽  
Vol 15 ◽  
Author(s):  
Ying Yu ◽  
Jun Qian ◽  
Qinglong Wu

This article proposes a bottom-up visual saliency model that uses the wavelet transform to conduct multiscale analysis and computation in the frequency domain. First, we compute the multiscale magnitude spectra by performing a wavelet transform to decompose the magnitude spectrum of the discrete cosine coefficients of an input image. Next, we obtain multiple saliency maps of different spatial scales through an inverse transformation from the frequency domain to the spatial domain, which utilizes the discrete cosine magnitude spectra after multiscale wavelet decomposition. Then, we employ an evaluation function to automatically select the two best multiscale saliency maps. A final saliency map is generated via an adaptive integration of the two selected multiscale saliency maps. The proposed model is fast, efficient, and can simultaneously detect salient regions or objects of different sizes. It outperforms state-of-the-art bottom-up saliency approaches in the experiments of psychophysical consistency, eye fixation prediction, and saliency detection for natural images. In addition, the proposed model is applied to automatic ship detection in optical satellite images. Ship detection tests on satellite data of visual optical spectrum not only demonstrate our saliency model's effectiveness in detecting small and large salient targets but also verify its robustness against various sea background disturbances.


2022 ◽  
Vol 15 ◽  
Author(s):  
Min-seok Kim ◽  
Joon Hyuk Cha ◽  
Seonhwa Lee ◽  
Lihong Han ◽  
Wonhyoung Park ◽  
...  

There have been few anatomical structure segmentation studies using deep learning. Numbers of training and ground truth images applied were small and the accuracies of which were low or inconsistent. For a surgical video anatomy analysis, various obstacles, including a variable fast-changing view, large deformations, occlusions, low illumination, and inadequate focus occur. In addition, it is difficult and costly to obtain a large and accurate dataset on operational video anatomical structures, including arteries. In this study, we investigated cerebral artery segmentation using an automatic ground-truth generation method. Indocyanine green (ICG) fluorescence intraoperative cerebral videoangiography was used to create a ground-truth dataset mainly for cerebral arteries and partly for cerebral blood vessels, including veins. Four different neural network models were trained using the dataset and compared. Before augmentation, 35,975 training images and 11,266 validation images were used. After augmentation, 260,499 training and 90,129 validation images were used. A Dice score of 79% for cerebral artery segmentation was achieved using the DeepLabv3+ model trained using an automatically generated dataset. Strict validation in different patient groups was conducted. Arteries were also discerned from the veins using the ICG videoangiography phase. We achieved fair accuracy, which demonstrated the appropriateness of the methodology. This study proved the feasibility of operating field view of the cerebral artery segmentation using deep learning, and the effectiveness of the automatic blood vessel ground truth generation method using ICG fluorescence videoangiography. Using this method, computer vision can discern blood vessels and arteries from veins in a neurosurgical microscope field of view. Thus, this technique is essential for neurosurgical field vessel anatomy-based navigation. In addition, surgical assistance, safety, and autonomous surgery neurorobotics that can detect or manipulate cerebral vessels would require computer vision to identify blood vessels and arteries.


2022 ◽  
Vol 15 ◽  
Author(s):  
Chongwen Wang ◽  
Zicheng Wang

Facial action unit (AU) detection is an important task in affective computing and has attracted extensive attention in the field of computer vision and artificial intelligence. Previous studies for AU detection usually encode complex regional feature representations with manually defined facial landmarks and learn to model the relationships among AUs via graph neural network. Albeit some progress has been achieved, it is still tedious for existing methods to capture the exclusive and concurrent relationships among different combinations of the facial AUs. To circumvent this issue, we proposed a new progressive multi-scale vision transformer (PMVT) to capture the complex relationships among different AUs for the wide range of expressions in a data-driven fashion. PMVT is based on the multi-scale self-attention mechanism that can flexibly attend to a sequence of image patches to encode the critical cues for AUs. Compared with previous AU detection methods, the benefits of PMVT are 2-fold: (i) PMVT does not rely on manually defined facial landmarks to extract the regional representations, and (ii) PMVT is capable of encoding facial regions with adaptive receptive fields, thus facilitating representation of different AU flexibly. Experimental results show that PMVT improves the AU detection accuracy on the popular BP4D and DISFA datasets. Compared with other state-of-the-art AU detection methods, PMVT obtains consistent improvements. Visualization results show PMVT automatically perceives the discriminative facial regions for robust AU detection.


2022 ◽  
Vol 15 ◽  
Author(s):  
Andrés Úbeda ◽  
Alvaro Costa-Garcia ◽  
Diego Torricelli ◽  
Ivan Vujaklija ◽  
Alessandro Del Vecchio

2022 ◽  
Vol 15 ◽  
Author(s):  
Namita Anil Kumar ◽  
Shawanee Patrick ◽  
Woolim Hong ◽  
Pilwon Hur

User customization of a lower-limb powered Prosthesis controller remains a challenge to this date. Controllers adopting impedance control strategies mandate tedious tuning for every joint, terrain condition, and user. Moreover, no relationship is known to exist between the joint control parameters and the slope condition. We present a control framework composed of impedance control and trajectory tracking, with the transitioning between the two strategies facilitated by Bezier curves. The impedance (stiffness and damping) functions vary as polynomials during the stance phase for both the knee and ankle. These functions were derived through least squares optimization with healthy human sloped walking data. The functions derived for each slope condition were simplified using principal component analysis. The weights of the resulting basis functions were found to obey monotonic trends within upslope and downslope walking, proving the existence of a relationship between the joint parameter functions and the slope angle. Using these trends, one can now design a controller for any given slope angle. Amputee and able-bodied walking trials with a powered transfemoral prosthesis revealed the controller to generate a healthy human gait. The observed kinematic and kinetic trends with the slope angle were similar to those found in healthy walking.


2022 ◽  
Vol 15 ◽  
Author(s):  
Wei Wang ◽  
Jianyu Chen ◽  
Jianquan Ding ◽  
Juanjuan Zhang ◽  
Jingtai Liu

Lower limb robotic exoskeletons have shown the capability to enhance human locomotion for healthy individuals or to assist motion rehabilitation and daily activities for patients. Recent advances in human-in-the-loop optimization that allowed for assistance customization have demonstrated great potential for performance improvement of exoskeletons. In the optimization process, subjects need to experience multiple types of assistance patterns, thus, leading to a long evaluation time. Besides, some patterns may be uncomfortable for the wearers, thereby resulting in unpleasant optimization experiences and inaccurate outcomes. In this study, we investigated the effectiveness of a series of ankle exoskeleton assistance patterns on improving walking economy prior to optimization. We conducted experiments to systematically evaluate the wearers' biomechanical and physiological responses to different assistance patterns on a lightweight cable-driven ankle exoskeleton during walking. We designed nine patterns in the optimization parameters range which varied peak torque magnitude and peak torque timing independently. Results showed that metabolic cost of walking was reduced by 17.1 ± 7.6% under one assistance pattern. Meanwhile, soleus (SOL) muscle activity was reduced by 40.9 ± 19.8% with that pattern. Exoskeleton assistance changed maximum ankle dorsiflexion and plantarflexion angle and reduced biological ankle moment. Assistance pattern with 48% peak torque timing and 0.75 N·m·kg−1 peak torque magnitude was effective in improving walking economy and can be selected as an initial pattern in the optimization procedure. Our results provided a preliminary understanding of how humans respond to different assistances and can be used to guide the initial assistance pattern selection in the optimization.


2022 ◽  
Vol 15 ◽  
Author(s):  
Chensheng Cheng ◽  
Can Wang ◽  
Dianyu Yang ◽  
Weidong Liu ◽  
Feihu Zhang

SLAM (Simultaneous Localization And Mapping) plays a vital role in navigation tasks of AUV (Autonomous Underwater Vehicle). However, due to a vast amount of image sonar data and some acoustic equipment's inherent high latency, it is a considerable challenge to implement real-time underwater SLAM on a small AUV. This paper presents a filter based methodology for SLAM algorithms in underwater environments. First, a multi-beam forward looking sonar (MFLS) is utilized to extract environmental features. The acquired sonar image is then converted to sparse point cloud format through threshold segmentation and distance-constrained filtering to solve the calculation explosion issue caused by a large amount of original data. Second, based on the proposed method, the DVL, IMU, and sonar data are fused, the Rao-Blackwellized particle filter (RBPF)-based SLAM method is used to estimate AUV pose and generate an occupancy grid map. To verify the proposed algorithm, the underwater vehicle is equipped as an experimental platform to conduct field tasks in both the experimental pool and wild lake, respectively. Experiments illustrate that the proposed approach achieves better performance in both state estimation and suppressing divergence.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hui Zhao ◽  
Aidi Liu ◽  
Qingjié Wang ◽  
Mingwen Zheng ◽  
Chuan Chen ◽  
...  

This paper explores the realization of a predefined-time synchronization problem for coupled memristive neural networks with multi-links (MCMNN) via nonlinear control. Several effective conditions are obtained to achieve the predefined-time synchronization of MCMNN based on the controller and Lyapunov function. Moreover, the settling time can be tunable based on a parameter designed by the controller, which is more flexible than fixed-time synchronization. Then based on the predefined-time stability criterion and the tunable settling time, we propose a secure communication scheme. This scheme can determine security of communication in the aspect of encrypting the plaintext signal with the participation of multi-links topology and coupled form. Meanwhile, the plaintext signals can be recovered well according to the given new predefined-time stability theorem. Finally, numerical simulations are given to verify the effectiveness of the obtained theoretical results and the feasibility of the secure communication scheme.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hong Li ◽  
Junsuo Qu ◽  
Xiangkui Jiang ◽  
Yun Niu

It is well-known that geomagnetic fields have multiple components or parameters, and that these geomagnetic parameters are related to each other. In this paper, a parameter selection method is proposed, and this paper mainly discusses the correlation of geomagnetic field parameters for geomagnetic navigation technology. For the correlation analysis between geomagnetic parameters, the similarity calculation of the correlation coefficient is firstly introduced for geomagnetic navigation technology, and the grouped results are obtained by data analysis. At the same time, the search algorithm (Hex-path algorithm) is used to verify the correlation analysis results. The results show the same convergent state for the approximate correlation coefficient. In other words, the simulation results are in agreement with the similarity calculation results.


Sign in / Sign up

Export Citation Format

Share Document