single muscle fiber
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 10)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Gregory J. Grosicki ◽  
Kevin J. Gries ◽  
Kiril Minchev ◽  
Ulrika Raue ◽  
Toby L. Chambers ◽  
...  

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Alex M. Noonan ◽  
Derek P. Zwambag ◽  
Nicole Mazara ◽  
Erin Weersink ◽  
Geoffrey A. Power ◽  
...  

Abstract Studies on single muscle fiber passive material properties often report relatively large variation in elastic modulus (or normalized stiffness), and it is not clear where this variation arises. This study was designed to determine if the stiffness, normalized to both fiber cross-sectional area and length, is inherently different between types 1 and 2 muscle fibers. Vastus lateralis fibers (n = 93), from ten young men, were mechanically tested using a cumulative stretch-relaxation protocol. SDS-PAGE classified fibers as types 1 or 2. While there was a difference in normalized stiffness between fiber types (p = 0.0019), an unexpected inverse relationship was found between fiber diameter and normalized stiffness (r = −0.64; p < 0.001). As fiber type and diameter are not independent, a one-way analysis of covariance (ANCOVA) including fiber diameter as a covariate was run; this eliminated the effect of fiber type on normalized stiffness (p = 0.1935). To further explore the relationship between fiber size and elastic properties, we tested whether stiffness was linearly related to fiber cross-sectional area, as would be expected for a homogenous material. Passive stiffness was not linearly related to fiber area (p < 0.001), which can occur if single muscle fibers are better represented as composite materials. The rule of mixtures for composite materials was used to explore whether the presence of a stiff perimeter-based fiber component could explain the observed results. The model (R2 = 0.38) predicted a perimeter-based normalized stiffness of 8800 ± 2600 kPa/μm, which is within the range of basement membrane moduli reported in the literature.


Neurology ◽  
2020 ◽  
Vol 94 (11) ◽  
pp. e1157-e1170 ◽  
Author(s):  
Saskia Lassche ◽  
Nicol C. Voermans ◽  
Robbert van der Pijl ◽  
Marloes van den Berg ◽  
Arend Heerschap ◽  
...  

ObjectiveTo investigate single muscle fiber contractile performance in muscle biopsies from patients with facioscapulohumeral muscular dystrophy (FSHD), one of the most common hereditary muscle disorders.MethodsWe collected 50 muscle biopsies (26 vastus lateralis, 24 tibialis anterior) from 14 patients with genetically confirmed FSHD and 12 healthy controls. Single muscle fibers (n = 547) were isolated for contractile measurements. Titin content and titin phosphorylation were examined in vastus lateralis muscle biopsies.ResultsSingle muscle fiber specific force was intact at saturating and physiologic calcium concentrations in all FSHD biopsies, with (FSHDFAT) and without (FSHDNORMAL) fatty infiltration, compared to healthy controls. Myofilament calcium sensitivity of force is increased in single muscle fibers obtained from FSHD muscle biopsies with increased fatty infiltration, but not in FSHD muscle biopsies without fatty infiltration (pCa50: 5.77–5.80 in healthy controls, 5.74–5.83 in FSHDNORMAL, and 5.86–5.90 in FSHDFAT single muscle fibers). Cross-bridge cycling kinetics at saturating calcium concentrations and myofilament cooperativity did not differ from healthy controls. Development of single muscle fiber passive tension was changed in all FSHD vastus lateralis and in FSHDFAT tibialis anterior, resulting in increased fiber stiffness. Titin content was increased in FSHD vastus lateralis biopsies; however, titin phosphorylation did not differ from healthy controls.ConclusionMuscle weakness in patients with FSHD is not caused by reduced specific force of individual muscle fibers, even in severely affected tissue with marked fatty infiltration of muscle tissue.


2019 ◽  
Vol 127 (6) ◽  
pp. 1710-1719 ◽  
Author(s):  
Kevin J. Gries ◽  
Kiril Minchev ◽  
Ulrika Raue ◽  
Gregory J. Grosicki ◽  
Gwénaëlle Begue ◽  
...  

The purpose of this study was to examine the effects of lifelong aerobic exercise on single-muscle fiber performance in trained women (LLE; n = 7, 72 ± 2 yr) by comparing them to old healthy nonexercisers (OH; n = 10, 75 ± 1 yr) and young exercisers (YE; n = 10, 25 ± 1 yr). On average, LLE had exercised ~5 days/wk for ~7 h/wk over the past 48 ± 2 yr. Each subject had a vastus lateralis muscle biopsy to examine myosin heavy chain (MHC) I and IIa single-muscle fiber size and function (strength, speed, power). MHC I fiber size was similar across all three cohorts (YE = 5,178 ± 157, LLE = 4,983 ± 184, OH = 4,902 ± 159 µm2). MHC IIa fiber size decreased ( P < 0.05) 36% with aging (YE = 4,719 ± 164 vs. OH = 3,031 ± 153 µm2), with LLE showing a similar 31% reduction (3,253 ± 189 µm2). LLE had 17% more powerful ( P < 0.05) MHC I fibers and offset the 18% decline in MHC IIa fiber power observed with aging ( P < 0.05). The LLE contractile power was driven by greater strength (+11%, P = 0.056) in MHC I fibers and elevated contractile speed (+12%, P < 0.05) in MHC IIa fibers. These data indicate that lifelong exercise did not benefit MHC I or IIa muscle fiber size. However, LLE had contractile function adaptations that enhanced MHC I fiber power and preserved MHC IIa fiber power through different contractile mechanisms (strength vs. speed). The single-muscle fiber contractile properties observed with lifelong aerobic exercise are unique and provide new insights into aging skeletal muscle plasticity in women at the myocellular level. NEW & NOTEWORTHY This is the first investigation to examine the effects of lifelong exercise on single-muscle fiber physiology in women. Nearly 50 yr of moderate to vigorous aerobic exercise training resulted in enhanced slow-twitch fiber power primarily by increasing force production, whereas fast-twitch fiber power was preserved primarily by increasing contractile speed. These unique muscle fiber power profiles helped offset the effects of fast-twitch fiber atrophy and highlight the benefits of lifelong aerobic exercise for myocellular health.


2019 ◽  
Vol 15 (4) ◽  
pp. 537-545 ◽  
Author(s):  
Yunah Jeon ◽  
Junghwa Choi ◽  
Hee Jaeng Kim ◽  
Hojun Lee ◽  
Jae-Young Lim ◽  
...  

2019 ◽  
Vol 82 ◽  
pp. 259-265
Author(s):  
Georgia I. Mitrou ◽  
Giorgos K. Sakkas ◽  
Konstantina P. Poulianiti ◽  
Aggeliki Karioti ◽  
Konstantinos Tepetes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document