scholarly journals Heating of the fuel mixture due to viscous stress ahead of accelerating flames in deflagration-to-detonation transition

2008 ◽  
Vol 372 (27-28) ◽  
pp. 4850-4857 ◽  
Author(s):  
Damir Valiev ◽  
Vitaly Bychkov ◽  
V'yacheslav Akkerman ◽  
Lars-Erik Eriksson ◽  
Mattias Marklund
Author(s):  
A. E. Zangiev ◽  
◽  
V. S. Ivanov ◽  
S. M. Frolov ◽  
◽  
...  

The air-breathing pulsed detonation engine (PDE) for an aircraft designed for a subsonic flight when operating on the products of pyrolysis of polypropylene was developed using the analytical estimates and parametric multivariant threedimensional (3D) calculations. The PDE consists of an air intake with a check valve, a fuel supply system, a prechamber-jet ignition system, and a combustion chamber with an attached detonation tube. Parametric 3D calculations allowed choosing the best length of the PDE combustor, which provides an efficient mixing of air with fuel, the best way to ignite the mixture (prechamber-jet ignition), the best location of the prechamber, the minimum length of the section with turbulizing obstacles for flame acceleration and deflagration-to-detonation transition (DDT), and the best degree of filling the detonation tube with the fuel mixture to achieve the maximum completeness of combustion.


Author(s):  
S. M. FROLOV ◽  
◽  
V. I. ZVEGINTSEV ◽  
V. S. AKSENOV ◽  
I. V. BILERA ◽  
...  

The term "detonability" with respect to fuel-air mixtures (FAMs) implies the ability of a reactive mixture of a given composition to support the propagation of a stationary detonation wave in various thermodynamic and gasdynamic conditions. The detonability of FAMs, on the one hand, determines their explosion hazards during storage, transportation, and use in various sectors of the economy and, on the other hand, the possibility of their practical application in advanced energy-converting devices operating on detonative pressure gain combustion.


Author(s):  
S. M. FROLOV ◽  
◽  
V. S. AKSENOV ◽  
I. O. SHAMSHIN ◽  
◽  
...  

Deflagration-to-detonation transition (DDT) in the system “gaseous oxygen- liquid film of n-decane” ' with a weak ignition source was obtained experimentally. In a series of experiments with ignition by an exploding wire that generates a weak primary shock wave (SW) with a Mach number ranging from 1.03 to 1.4, the DDT with the detonation run-up distances 1 to 4 m from the ignition source and run-up time 3 ms to 1.7 s after ignition was observed in a straight smooth channel of rectangular 54 x 24-millimeter cross section, 3 and 6 m in length with one open end. The DDT is obtained for relatively thick films with a thickness of 0. 3-0.5 mm, which corresponds to very high values of the overall fuel-to-oxygen equivalence ratios of 20-40. The registered velocity of the detonation wave (DW) was 1400-1700 m/s. In a number of experiments, a high-velocity quasi-stationary detonation-like combustion front was recorded running at an average velocity of 700-1100 m/s. Its structure includes the leading SW followed by the reaction zone with a time delay of 90 to 190 s. The obtained results are important for the organization of the operation process in advanced continuous-detonation and pulsed-detonation combustors of rocket and air-breathing engines with the supply of liquid fuel in the form of a wall film.


Author(s):  
Philip Diwakar ◽  
Jaleel Valappil

This paper examines safety concerns related to flame speeds when warm relief gas snuffs out the pilot at the flare stack and pulls in ambient air and a spark ignites the vapor in the header. The flame speed essentially determines if the propagating flame speed is a deflagration or a detonation based on whether its subsonic or supersonic. While pipes are sized for deflagrations, they need to be analyzed and tested for detonation pressures and temperatures. Transient CFD calculations help determine the flame speeds, deflagration to detonation transition, pressures and temperatures are compared to pipe specifications and help determine if a detonation leads to a Loss of Containment and suggests mitigations.


Author(s):  
V. V. Golub ◽  
S. V. Golovastov ◽  
K. V. Ivanov ◽  
D. I. Baklanov ◽  
D. A. Lenkevich ◽  
...  

Author(s):  
Katuo ASATO ◽  
Takeshi MIYASAKA ◽  
Takuya SUKEGAWA ◽  
Kouki TANABASHI ◽  
Atsuhiro KAWAMATSU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document