smooth channel
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 40)

H-INDEX

17
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 148
Author(s):  
Wenbin He ◽  
Ke Zhang ◽  
Junmei Wu ◽  
Jiang Lei ◽  
Pengfei Su ◽  
...  

In order to deepen the understanding of rotating effects on internal cooling, the flow and heat transfer characteristics of 2-pass rotating rectangular smooth/ribbed channels are investigated by Reynolds-Averaged Navier-Stokes (RANS) simulation. Three rotating numbers (Ro = 0.10, 0.25, and 0.40) are simulated, and the maximum buoyancy parameter (Bo) reaches 5.0. The results show that the rotating buoyancy has significant effects on the flow and heat transfer under high Bo conditions. When Bo > 1.0, rotating buoyancy inducts flow separation near the leading edge (LE) in the first passage, while the air flow in the second passage shows a double-peak profile. With increased Bo, the heat transfer in the first passage is greatly increased, and the maximum growth rate occurs at Bo = 0.6~1.0. However, the heat transfer in the second passage has no obvious changes due to a strong turn effect. In the ribbed channel, rotating effects are much weaker than those in the smooth channel. This research helps to improve the understanding of the internal cooling heat transfer mechanism in land-based gas turbines under typical operating conditions.


Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract In order to stably operate the equipment inside the tokamak, which is loaded with a heat flux of several MW/m2 under the one-side heating condition, it is necessary to thoroughly prepare for various thermal engineering limits that may occur under the high heat flux load condition. In this study, we have experimentally explored critical heat flux (CHF) and onset of flow instability (OFI), which are considered potential threats in a DEMO fusion power plant. Specifically, the effect of system parameters on CHF was investigated. The results indicate that with an increase in subcooling and mass flux, the CHF increased, as it induced a faster bubble condensation near the CHF. As the system pressure increased, the CHF also increased. This is because the bubble size reduction effect was dominant in the pressure range of 1–10 bar. Most of the existing CHF correlations could evaluate the CHF with reasonable accuracy of within 25%; especially, the Boscary CHF correlation yielded the highest accuracy with an average error of 12%. Similar to CHF, OFI, which is a measure of the sudden fluctuations in the system pressure caused by a large amount of vapor generated due to the high heat flux, tended to increase as the subcooling, mass flow rate, and system pressure increased. Most of the existing OFI correlations yielded large error rates (more than 135%) as these correlations were primarily developed for micro-channels. Therefore, in this study, a new OFI correlation was developed using a Python code, in combination with an artificial intelligence (AI) regression method. The developed correlation can be used in the cooling system design of tokamaks, which involve a high-heat load condition on one-side of the reactor.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012020
Author(s):  
V M Molochnikov ◽  
N I Mikheev ◽  
A N Mikheev ◽  
A A Paereliy ◽  
A E Goltsman

Abstract Experimental setup is described. Pulsating flow in a smooth channel, and steady and pulsating flows at a bifurcation section simulating the distal end of an artery anastomosis at different flow rates in the main and outflow channels are studied. Indications of laminar-turbulent transition are observed in the near-wall region of the smooth channel. Mechanisms of turbulization of the near-wall region in the pulsating flow are suggested. Vortex flow structure in the bifurcation section is analyzed.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6764
Author(s):  
Sadiq Ali ◽  
Faraz Ahmad ◽  
Kareem Akhtar ◽  
Numan Habib ◽  
Muhammad Aamir ◽  
...  

The present study investigates the thermo-hydraulic characteristics of a microchannel sink with novel trefoil Shaped ribs. The motivation for this form of rib shape is taken from the design of lung alveoli that exchange oxygen and carbon dioxide. This study has been conducted numerically by using a code from the commercially available Fluent software. The trefoil shaped ribs were mounted on the centerline of different walls of the microchannel in three different configurations. These consisted of base wall trefoil ribs (MC-BWTR), sidewall trefoil ribs (MC-SWTR), all wall trefoil ribs (MC-AWTR) and smooth channel (MC-SC) having no ribs on its wall. The streamline distance between the ribs was kept constant at 0.4 mm, and the results were compared by using pressure drop (Δp), Nusselt number (Nu), thermal resistance (Rth) and thermal enhancement factor (η). The results indicated that the addition of trefoil ribs to any wall improved heat transfer characteristics at the expense of an increase in the friction factor. The trends of the pressure drop and heat transfer coefficient were the same, which indicated higher values for MC-AWTR followed by MC-SWTR and a lower value for MC-BWTR. In order to compare the thermal and hydraulic performance of all the configurations simultaneously, the overall performance was quantified in terms of the thermal enhancement factor, which was higher than one in each case, except for MC-AWTR, in 100 < Re < 200 regimes. The thermal enhancement factor in the ribbed channel was the highest for MC-SWTR followed by MC-BWTR, and it was the lowest for MC-AWTR. Moreover, the thermal enhancement factor increases with the Reynolds number (Re) for each case. This confirms that the increment in the Nusselt number with velocity is more significant than the pressure drop. The highest thermal enhancement factor of 1.6 was attained for MC-SWTR at Re = 1000, and the lowest value of 0.87 was achieved for MC-AWTR at Re = 100.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012010
Author(s):  
M S Frantsuzov

Abstract This paper presents the results of a computational study of the efficiency of various methods of heat transfer intensification in model channels containing various types of intensifiers. The following methods of intensification of convective heat transfer are considered: acoustic, the intensifiers twisted tape, wire spiral, and joint intensifier of a wire spiral and twisted tape. The study of thermal and hydraulic processes in the channels is carried out using computer modeling based on the solution of the Navier-Stokes equations averaged by Reynolds, the energy and state equations supplemented by the turbulence model. The thermal and hydraulic characteristics of various methods of heat transfer intensification are determined in the range of Reynolds numbers from 10000 to 60,000, and the efficiency of the intensification is determined based on the author's criterion. The characteristics of a smooth channel in the above-mentioned range of Reynolds numbers are considered as reference thermal and hydraulic characteristics. Comparative analysis has shown that the acoustic method of heat transfer intensification is most effective in the range of Reynolds numbers, where different modes of self-sustaining acoustic oscillations occur. The presented results may be used in the development and design of heat exchangers.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Étienne Robert ◽  
Peter Ireland

Abstract An experimental and numerical study of the convective heat transfer enhancement provided by two rib families (W and Broken W) is presented, covering Reynolds numbers (Re) between 300,000 to 900,000 in a straight channel with a rectangular cross section (AR=1.29). These high Reynolds numbers were selected for the current study since most data in the available literature typically pertain to investigations at lower Reynolds numbers. The objective of this study is to assess the local heat transfer coefficient (HTC) enhancement (compared with a smooth channel) and the overall thermal performance, taking into account the effect of increased roughness on the friction factor, of a group of W shaped turbulators over a wide range of Reynolds numbers. Furthermore, the effects of increasing the rib spacing on the thermal performance of the Broken W configuration are presented and discussed. The numerical results are compared against heat transfer measurements obtained using the Transient Liquid Crystal (TLC) method. The research shows that for the Broken W turbulators, increasing the Reynolds number is associated with an overall decrease of the thermal performance while the thermal performance of the W configuration is relatively insensitive to Reynolds number. Nevertheless, the Broken W configuration delivers higher thermal performance and heat transfer compared with the W configuration for the range of Re investigated. The Broken W configuration with a pitch spacing of 10 times the rib height was shown to provide the optimal thermal performance in the configurations investigated here.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4241
Author(s):  
Nedal Al Taradeh ◽  
Eric Frayssinet ◽  
Christophe Rodriguez ◽  
Frederic Morancho ◽  
Camille Sonneville ◽  
...  

This paper proposes a new technique to engineer the Fin channel in vertical GaN FinFET toward a straight and smooth channel sidewall. Consequently, the GaN wet etching in the TMAH solution is detailed; we found that the m-GaN plane has lower surface roughness than crystallographic planes with other orientations, including the a-GaN plane. The grooves and slope (Cuboids) at the channel base are also investigated. The agitation does not assist in Cuboid removal or crystallographic planes etching rate enhancement. Finally, the impact of UV light on m and a-GaN crystal plane etching rates in TMAH has been studied with and without UV light. Accordingly, it is found that the m-GaN plane etching rate is enhanced from 0.69 to 1.09 nm/min with UV light; in the case of a-GaN plane etching, UV light enhances the etching rate from 2.94 to 4.69 nm/min.


Author(s):  
Hachemi Rachedi Lamia ◽  
Lakehal Moussa ◽  
Achour Bachir

Abstract The critical regime plays a primordial role in the study of gradually varying flows by classifying flow regimes and slopes. Through this work, a new approach is proposed to analyze critical flow regime in an egg-shaped channel. Based on both the definition of Froude number and Achour and Bedjaoui general discharge relationship, a relation between critical and normal depths is derived and then graphically represented for the particular case of a smooth channel characterized by a generating diameter equal to one meter. The results show the influence of the slope on the frequency of occurrence of the critical regime. At the same time and independently of the flow rate, a very advantageous approach for the calculation of the Froude number has been proposed. The study shows that there are six zones to differentiate the various flow states, namely: on the one hand for steep slopes two subcritical zones interspersed by a supercritical zone and on the other hand for mild slopes a zone corresponding to uniform flow, an area where the flow is probably gradually varied and finally an area where the flow is abruptly varied. Based on the specific energy equation, a validation process concluded that the proposed relationships were reliable.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 153
Author(s):  
Wenpeng Guo ◽  
Li Tang ◽  
Biqiang Zhou ◽  
Yingsing Fung

Micromixers play an important role in many modular microfluidics. Complex on-chip mixing units and smooth channel surfaces ablated by lasers on polymers are well-known problems for microfluidic chip fabricating techniques. However, little is known about the ablation of rugged surfaces on polymer chips for mixing uses. This paper provides the first report of an on-chip compact micromixer simply, easily and quickly fabricated using laser-ablated irregular microspheric surfaces on a polymethyl methacrylate (PMMA) microfluidic chip for continuous mixing uses in modular microfluidics. The straight line channel geometry is designed for sequential mixing of nanoliter fluids in about 1 s. The results verify that up to about 90% of fluids can be mixed in a channel only 500 µm long, 200 µm wide and 150 µm deep using the developed micromixer fabricating method under optimized conditions. The computational flow dynamics simulation and experimental result agree well with each other.


Sign in / Sign up

Export Citation Format

Share Document