Armchair graphene nanoribbon-based spin caloritronics

2021 ◽  
pp. 127892
Author(s):  
Hong-Li Zeng ◽  
Li Yang ◽  
Yan-Dong Guo ◽  
Jing-Jing He ◽  
Yue Jiang ◽  
...  
2021 ◽  
Author(s):  
Hong-Li Zeng ◽  
Li Yang ◽  
Yan-Dong Guo ◽  
Jing-Jing He ◽  
Yue Jiang ◽  
...  

2015 ◽  
Vol 1112 ◽  
pp. 80-84
Author(s):  
Fatimah A. Noor ◽  
Rifky Syariati ◽  
Endi Suhendi ◽  
Mikrajuddin Abdullah ◽  
Khairurrijal

We have developed a model of the tunneling current in n-p-n bipolar transistor based on armchair graphene nanoribbon (AGNR). Airy-wavefunction approach is employed to obtain electron transmittance, and the obtained transmittance is then used to obtain the tunneling current. The tunneling current is calculated for various variables such as base-emitter voltage, base-current voltage, and AGNR width. It is found that the tunneling current increases with increasing the base-emitter voltage or the base-collector voltage. This result is due to the lowered barrier height of the base region caused by the increase in the base-emitter voltage or the base-collector voltage. In addition, the tunneling current density increases with the width for narrow AGNR and, on the other hand, it decreases for wide AGNR. This finding might be due to the contributions of the band gap energy and the electron effective mass of AGNR which are inversely proportional to the AGNR width.


2014 ◽  
Vol 4 (4) ◽  
pp. 259-262
Author(s):  
Rifky Syariati ◽  
◽  
Endi Suhendi ◽  
Fatimah A. Noor ◽  
Mikrajuddin Abdullah ◽  
...  

2021 ◽  
Author(s):  
Madhusudan Mishra ◽  
N R Das ◽  
Narayan Sahoo ◽  
Trinath Sahu

Abstract We study the electron transport in armchair graphene nanoribbon (AGNR) resonant tunneling diode (RTD) using square and V-shaped potential well profiles. We use non-equilibrium Green’s function formalism to analyze the transmission and I-V characteristics. Results show that an enhancement in the peak current (Ip ) can be obtained by reducing the well width (Ww ) or barrier width (Wb ). As Ww decreases, Ip shifts to a higher peak voltage (Vp ), while there is almost no change in Vp with decreasing Wb . It is gratifying to note that there is an enhancement in Ip by about 1.6 times for a V-shaped well over a square well. Furthermore, in the case of a V-shaped well, the negative differential resistance occurs in a shorter voltage range, which may beneficial for ultra-fast switching and high-frequency signal generation. Our work anticipates the suitability of graphene, having better design flexibility, to develop ideally 2D RTDs for use in ultra-dense nano-electronic circuits and systems.


Sign in / Sign up

Export Citation Format

Share Document