electron tunneling
Recently Published Documents


TOTAL DOCUMENTS

2392
(FIVE YEARS 166)

H-INDEX

96
(FIVE YEARS 6)

2022 ◽  
Vol 105 (3) ◽  
Author(s):  
S. Parolo ◽  
M. Lupatini ◽  
E. Külah ◽  
C. Reichl ◽  
W. Dietsche ◽  
...  

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 91
Author(s):  
Chris Rourk

A newly discovered physical mechanism involving incoherent electron tunneling in layers of the protein ferritin that are found in catecholaminergic neurons (catecholaminergic neuron electron transport or CNET) is hypothesized to support communication between neurons. Recent tests further confirm that these ferritin layers can also perform a switching function (in addition to providing an electron tunneling mechanism) that could be associated with action selection in those neurons, consistent with earlier predictions based on CNET. While further testing would be needed to confirm the hypothesis that CNET allows groups of neurons to communicate and act as a switch for selecting one of the neurons in the group to assist in reaching action potential, this paper explains how that hypothesized behavior would be consistent with Integrated Information Theory (IIT), one of a number of consciousness theories (CTs). While the sheer number of CTs suggest that any one of them alone is not sufficient to explain consciousness, this paper demonstrates that CNET can provide a physical substrate and action selection mechanism that is consistent with IIT and which can also be applied to other CTs, such as to conform them into a single explanation of consciousness.


2022 ◽  
Author(s):  
Ruigang Li ◽  
Lei Chen ◽  
Jun-Feng Liu ◽  
Jun Wang

Abstract We study the crossed Andreev reflection in zigzag phosphorene nanoribbon based ferromagnet/superconductor/ferromagnet junction. Only edge states, which are entirely detached from the bulk gap, involved in the transport process. The perfect crossed Andreev reflection, with the maximal nonlocal conductance −2e 2 /h, is addressed by setting the chemical potentials of the leads properly. At this situation, the local Andreev reflection and the electron tunneling are completely eliminated, the incoming electrons can only be reflected as electrons or transmitted as holes, corresponding to the electron reflection and the crossed Andreev reflection respectively. The nonlocal conductance oscillates periodically with the length and the chemical potential of the superconductor. Our study shows that the phosphorene based junction can be used as the quantum device to generate entangled-electrons.


2021 ◽  
Author(s):  
Kazi Jannatul Tasnim ◽  
Safia Abdullah R Alharbi ◽  
Rajib Musa ◽  
Simon Hosch Lovell ◽  
Zachary Alexander Akridge ◽  
...  

Abstract Two-dimensional (2D) polar materials experience an in-plane charge transfer between different elements due to their electron negativities. When they form vertical heterostructures, the electrostatic force triggered by such charge transfer plays an important role in the interlayer bonding beyond van der Waals (vdW) interaction. Our comprehensive first principle study on the structural stability of the 2D SiC/GeC hybrid bilayer heterostructure has found that the electrostatic interlayer interaction can induce the π-π orbital hybridization between adjacent layers under different stacking and out-of-plane species ordering, with strong hybridization in the cases of Si-C and C-Ge species orderings but weak hybridization in the case of the C-C ordering. In particular, the attractive electrostatic interlayer interaction in the cases of Si-C and C-Ge species orderings mainly controls the equilibrium interlayer distance and the vdW interaction makes the system attain a lower binding energy. On the contrary, the vdW interaction mostly controls the equilibrium interlayer distance in the case of the C-C species ordering and the repulsive electrostatic interlayer force has less effect. Interesting finding is that the band structure of the SiC/GeC hybrid bilayer is sensitive to the layer-layer stacking and the out-of-plane species ordering. An indirect band gap of 2.76 eV (or 2.48 eV) was found under the AA stacking with Si-C ordering (or under the AB stacking with C-C ordering). While a direct band gap of 2.00 eV – 2.88 eV was found under other stacking and species orderings, demonstrating its band gap tunable feature. Furthermore, there is a charge redistribution in the interfacial region leading to a built-in electric field. Such field will separate the photo-generated charge carriers in different layers and is expected to reduce the probability of carrier recombination, and eventually give rise to the electron tunneling between layers.


2021 ◽  
Vol 12 (4) ◽  
pp. 306-313
Author(s):  
S. I. Pokutnyi ◽  
◽  
N. G. Shkoda ◽  

It is shown that electron tunneling through a potential barrier that separates two quantum dots of germanium leads to the splitting of electron states localized over spherical interfaces (a quantum dot – a silicon matrix). The dependence of the splitting values of the electron levels on the parameters of the nanosystem (the radius a quantum dot germanium, as well as the distance D between the surfaces of the quantum dots) is obtained. It has been shown that the splitting of electron levels in the QD chain of germanium causes the appearance of a zone of localized electron states, which is located in the bandgap of silicon matrix. It has been found that the motion of a charge-transport exciton along a chain of quantum dots of germanium causes an increase in photoconductivity in the nanosystem. It is shown that in the QD chain of germanium a zone of localized electron states arises, which is located in the bandgap of the silicon matrix. Such a zone of local electron states is caused by the splitting of electron levels in the QD chain of germanium. Moreover, the motion of an electron in the zone of localized electron states causes an increase in photoconductivity in the nanosystem. The effect of increasing photoconductivity can make a significant contribution in the process of converting the energy of the optical range in photosynthesizing nanosystems. It has been found that comparison of the splitting dependence of the exciton level Eех(а) at a certain radius a QD with the experimental value of the width of the zone of localized electron states arising in the QD chain of germanium, allows us to obtain the distances D between the QD surfaces. It has been shown that by changing the parameters of Ge/Si heterostructures with germanium QDs (radius of a germanium QD, as well as the distance D between the surfaces of the QDs), it is possible to vary the positions and widths of the zones of localized electronic states. The latter circumstance opens up new possibilities in the use of such nanoheterostructures as new structural materials for the creation of new nano-optoelectronics and nano-photosynthesizing devices of the infrared range.


Author(s):  
Anup Kumar Biswas

By manipulating an electron that tunnels the tunnel junction of a single electron transistor, one will be able to reach a standard output logic “1” or logic “0”. The operation of the Single Electron Transistor (SET) is depending upon the bias voltage as well as the input signal(s). By varying the input voltage levels of a SET, the output voltage levels can significantly be changed on the basis of tunneling of an electron whether tunneling happened or not. As our concentration is the measuring of an unknown voltage, we are to implement a voltmeter system to provide a digital output of 3 bits whenever an unknown input voltage is kept in touching in the input terminal. A reference/standard voltage (say 8mV) will be connected in series with eight resistances ( 8 Rs) for the purpose of making a seven threshold voltages, for 7 comparators, in an ascending order of values from ground to reference voltage for seven comparators which are used in this present work. The voltmeter implemented consists of (i) a voltage divider, (ii) a set of seven comparators, (iii) seven Exclusive-OR gates and (iv) three 4-input OR gates. The concepts of implementing “Parallel Comparator based voltmeter” is discussed in two ways (i) by classical block diagram and (ii) using Single electron transistor based circuit. The measuring of an input analog voltage will not be the same as the digital output value. A 3-bit output indicates that the input analog voltage must lie on within a particular small range of voltage. The encoder circuit which is connected to the outputs of the comparators is hard to construct whenever the three terminals output are expressed with the output variables (Wi) of the comparators. For simple and user-friendly circuit, the outputs (Wi) of the comparators are modified to Di variables so as to get the same 3-bit encoder/voltmeter output. For this purpose, 7 extra component called 2-input XORs based on SET are used. Seven such XORs are set, and the output of them are passed to three 4-input OR gates according to the required logic expressions. It is found that all the output data of the voltmeter are coherently matched with the theoretical aspects. Processing delays are found out for all circuits. Power consumptions of all of them are shown in tabular and graphical forms. All the circuit we are intending to make are provided in due places with their logic circuit or simulation set and the simulation results are provided as well. Different truth tables are given for keeping track of whether input-output relationships matches with the theoretical results. We have thought of whether the present work circuits are faster or slower than the circuits of CMOS based-circuits. The power consumed at the time of tunneling event for a circuit is measured and sensed that it exists in the range between 1×10^(-18) Joules to 22×10^(-18)Joules which is very small amount. All the combinational circuits presented in this work are of SET-based.


2021 ◽  
Vol 104 (24) ◽  
Author(s):  
R. Avriller ◽  
Q. Schaeverbeke ◽  
T. Frederiksen ◽  
F. Pistolesi

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1756
Author(s):  
Xuchang Su ◽  
Zhi He ◽  
Lijun Meng ◽  
Hong Liang ◽  
Ruhong Zhou

Single-molecule techniques such as electron tunneling and atomic force microscopy have attracted growing interests in protein sequencing. For these methods, it is critical to refine and stabilize the protein sample to a “suitable mode” before applying a high-fidelity measurement. Here, we show that a planar heterostructure comprising boronic graphene (BC3) and nitrogenized graphene (C3N) sandwiched stripe (BC3/C3N/BC3) is capable of the effective stretching and confinement of three types of intrinsically disordered proteins (IDPs), including amyloid-β (1–42), polyglutamine (Q42), and α-Synuclein (61–95). Our molecular dynamics simulations demonstrate that the protein molecules interact more strongly with the C3N stripe than the BC3 one, which leads to their capture, elongation, and confinement along the center C3N stripe of the heterostructure. The conformational fluctuations of IDPs are substantially reduced after being stretched. This design may serve as a platform for single-molecule protein analysis with reduced thermal noise.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yue Wang ◽  
Ghulam Bary ◽  
Riaz Ahmad ◽  
Dameng Yin ◽  
Shiwei Xie ◽  
...  

Geometry, electrostatics, and single-electron tunneling contribute to the nonlinearity in the quantum dot embedded nanomechanical resonator, while “Duffing term” is a kind of mathematics describing the third-order nonlinearity of the system as a whole. We study theoretically the influence of a variation of a mathematical parameter Fuffing term on the actual physical effect. The position probability distribution, the average current, and the displacement fluctuation spectrum with the different Duffing parameter and electromechanical coupling are obtained through numerically calculating the Fokker Planck equation. The mechanical bistability has been described by these quantities under different electromechanical coupling and Duffing parameters. We conclude that the nonlinearities of the nanotube resonator contribute to the mechanical bistability, which induces the asymmetry of the position probability distribution, compresses the current, and softens or stiffens the mechanical resonance frequency as the same as the electromechanical coupling to use it in mechanical engineering.


Sign in / Sign up

Export Citation Format

Share Document