scholarly journals Dual separated variables and scalar products

2020 ◽  
Vol 806 ◽  
pp. 135494 ◽  
Author(s):  
Nikolay Gromov ◽  
Fedor Levkovich-Maslyuk ◽  
Paul Ryan ◽  
Dmytro Volin
Author(s):  
B. G. Gasanov ◽  
A. A. Aganov ◽  
P. V. Sirotin

The paper describes main methods for assessing the deformed state of porous body metal frames developed by different authors based on the analysis of yield conditions and governing equations, using the principle of equivalent strains and stresses, and studying the kinetics of metal strain during pressing. Formulas were derived to determine the components of the powder particle material strain tensor through dyads, as scalar products of the basis vectors of the convected coordinate system at each moment of porous molding strain. The expediency of using the analytical expressions developed to determine the deformed state of the particle material was experimentally substantiated subject to the known displacement vector parameters of representative elements (macrostrains) of porous billets. The applications of well-known analytical expressions were established, and the proposed formulas proved applicable for the deformed state assessment of particle metal during the pressure processing of powder products of different configurations and designing billets with a defined porosity and geometric parameters as a basis for compiling software algorithms for the computer simulation of porous molding hot stamping.


1997 ◽  
Vol 35 (5) ◽  
pp. 310-311
Author(s):  
Ernest Zebrowski
Keyword(s):  

1994 ◽  
Vol 04 (01) ◽  
pp. 193-207 ◽  
Author(s):  
VADIM BIKTASHEV ◽  
VALENTIN KRINSKY ◽  
HERMANN HAKEN

The possibility of using nonlinear media as a highly parallel computation tool is discussed, specifically for image classification and recognition. Some approaches of this type are known, that are based on stationary dissipative structures which can “measure” scalar products of images. In this paper, we exploit the analogy between binary images and point sets, and use the Hausdorff metrics for comparing the images. It does not require the measure at all, and is based only on the metrics of the space whose subsets we consider. In addition to Hausdorff distance, we suggest a new “nonlinear” version of this distance for comparison of images, called “autowave” distance. This distance can be calculated very easily and yields some additional advantages for pattern recognition (e.g. noise tolerance). The method was illustrated for the problem of machine reading (Optical Character Recognition). It was compared with some famous OCR programs for PC. On a medium quality xerocopy of a journal page, in the same conditions of learning and recognition, the autowave approach resulted in much fewer mistakes. The method can be realized using only one chip with simple uniform connection of the elements. In this case, it yields an increase in computation speed of several orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document