Distribution of the partitioning protein KorB on the genome of IncP-1 plasmid RK2

Plasmid ◽  
2008 ◽  
Vol 59 (3) ◽  
pp. 163-175 ◽  
Author(s):  
Chung-Min Chiu ◽  
Susan E. Manzoor ◽  
Sarah M. Batt ◽  
Sidra tul Muntaha ◽  
Lewis E.H. Bingle ◽  
...  
Keyword(s):  
Author(s):  
M. Fayyaz Rehman ◽  
M. Jeeves ◽  
E. I. Hyde

AbstractIncC from the low-copy number plasmid RK2, is a member of the ParA family of proteins required for partitioning DNA in many bacteria and plasmids. It is an ATPase that binds DNA and its ParB protein partner, KorB. Together, the proteins move replicated DNA to appropriate cellular positions, so that each daughter cell inherits a copy on cell division. IncC from RK2 is expressed in two forms. IncC2 is homologous to bacterial ParA proteins, while IncC1 has an N-terminal extension of 105 amino acids and is similar in length to ParA homologues in other plasmids. We have been examining the role of this extension, here called IncC NTD. We present its backbone NMR chemical shift assignments and show that it is entirely intrinsically disordered. The assignments were achieved using C-detected, CON-based spectra, complemented by HNN spectra to obtain connectivities from three adjacent amino acids. We also observed evidence of deamidation of the protein at a GNGG sequence, to give isoAsp, giving 2 sets of peaks for residues up to 5 amino acids on either side of the modification. We have assigned resonances from around the position of modification for this form of the protein.


1999 ◽  
Vol 33 (3) ◽  
pp. 490-498 ◽  
Author(s):  
Kelly S. Doran ◽  
Donald R. Helinski ◽  
Igor Konieczny
Keyword(s):  

Genetics ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 27-36 ◽  
Author(s):  
A Greener ◽  
S M Lehman ◽  
D R Helinski

Abstract A broad host range cloning vector was constructed, suitable for monitoring promoter activity in diverse Gram-negative bacteria. This vector, derived from plasmid RSF1010, utilized the firefly luciferase gene as the reporter, since the assay for its bioluminescent product is sensitive, and measurements can be made without background from the host. Twelve DNA fragments with promoter activity were obtained from broad host range plasmid RK2 and inserted into the RSF1010 derived vector. The relative luciferase activities were determined for these fragments in five species of Gram-negative bacteria. In addition, four promoters were analyzed by primer extension to locate transcriptional start sites in each host. The results show that several of the promoters vary substantially in relative strengths or utilize different transcriptional start sites in different bacteria. Other promoters exhibited similar activities and identical start sites in the five hosts examined.


1982 ◽  
Vol 152 (3) ◽  
pp. 1078-1090
Author(s):  
R Meyer ◽  
M Hinds

By cloning fragments of plasmid DNA, we have shown that RK2 expresses incompatibility by more than one mechanism. One previously identified (R. J. Meyer, Mol. Gen, Genet. 177:155--161, 1979; Thomas et al., Mol. Gen. Genet. 181:1--7, 1981) determinant for incompatibility is linked to the origin of plasmid DNA replication. When cloned into a plasmid vector, this determinant prevents the stable inheritance of a coresident RK2. However, susceptibility to this mechanism of incompatibility requires an active RK2 replicon and is abolished if another replicator is provided. We have also cloned a second incompatibility determinant, encoded within the 54.1- to 56.4-kilobase region of RK2 DNA, which we call IncP-1(II). An RK2 derivative remains sensitive to IncP-1(II), even when it is not replicating by means of the RK2 replicon. The 54.1- to 56.4-kilobase DNA does not confer susceptibility to the IncP-1(II) mechanism, nor does it encode a detectable system for efficient plasmid partitioning. The incompatibility may be related to the expression of genes mapping in the 54.1- to 56.4-kilobase region, which are required for plasmid maintenance and suppression of plasmid-encoded killing functions.


1993 ◽  
Vol 175 (8) ◽  
pp. 2423-2435 ◽  
Author(s):  
V J Thomson ◽  
O S Jovanovic ◽  
R F Pohlman ◽  
C H Chang ◽  
D H Figurski

Sign in / Sign up

Export Citation Format

Share Document