plasmid maintenance
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 6)

H-INDEX

33
(FIVE YEARS 2)

2020 ◽  
Vol 117 (47) ◽  
pp. 29839-29850
Author(s):  
Katelyn E. Zulauf ◽  
James E. Kirby

Carbapenem-resistant Enterobacteriaceae (CRE) are multidrug-resistant pathogens for which new treatments are desperately needed. Carbapenemases and other types of antibiotic resistance genes are carried almost exclusively on large, low-copy-number plasmids (pCRE). Accordingly, small molecules that efficiently evict pCRE plasmids should restore much-needed treatment options. We therefore designed a high-throughput screen to identify such compounds. A synthetic plasmid was constructed containing the plasmid replication machinery from a representativeEscherichia coliCRE isolate as well as a fluorescent reporter gene to easily monitor plasmid maintenance. The synthetic plasmid was then introduced into anE. coliK12tolChost. We used this screening strain to test a library of over 12,000 known bioactive agents for molecules that selectively reduce plasmid levels relative to effects on bacterial growth. From 366 screen hits we further validated the antiplasmid activity of kasugamycin, an aminoglycoside; CGS 15943, a nucleoside analog; and Ro 90-7501, a bibenzimidazole. All three compounds exhibited significant antiplasmid activity including up to complete suppression of plasmid replication and/or plasmid eviction in multiple orthogonal readouts and potentiated activity of the carbapenem, meropenem, against a strain carrying the large, pCRE plasmid from which we constructed the synthetic screening plasmid. Additionally, we found kasugamycin and CGS 15943 blocked plasmid replication, respectively, by inhibiting expression or function of the plasmid replication initiation protein, RepE. In summary, we validated our approach to identify compounds that alter plasmid maintenance, confer resensitization to antimicrobials, and have specific mechanisms of action.


2020 ◽  
Vol 87 (2) ◽  
Author(s):  
Ewa Lewicka ◽  
Monika Mitura ◽  
Kamil Steczkiewicz ◽  
Justyna Kieracinska ◽  
Kamila Skrzynska ◽  
...  

ABSTRACT KfrA, encoded on the broad-host-range RA3 plasmid, is an alpha-helical DNA-binding protein that acts as a transcriptional autoregulator. The KfrARA3 operator site overlaps the kfrA promoter and is composed of five 9-bp direct repeats (DRs). Here, the biological properties of KfrA were studied using both in vivo and in vitro approaches. Localization of the DNA-binding helix-turn-helix motif (HTH) was mapped to the N29-R52 region by protein structure modeling and confirmed by alanine scanning. KfrA repressor ability depended on the number and orientation of DRs in the operator, as well as the ability of the protein to oligomerize. The long alpha-helical tail from residues 54 to 355 was shown to be involved in self-interactions, whereas the region from residue 54 to 177 was involved in heterodimerization with KfrC, another RA3-encoded alpha-helical protein. KfrA also interacted with the segrosome proteins IncC (ParA) and KorB (ParB), representatives of the class Ia active partition systems. Deletion of the kfr genes from the RA3 stability module decreased the plasmid retention in diverse hosts in a species-dependent manner. The specific interactions of KfrA with DNA are essential not only for the transcriptional regulatory function but also for the accessory role of KfrA in stable plasmid maintenance. IMPORTANCE Alpha-helical coiled-coil KfrA-type proteins are encoded by various broad-host-range low-copy-number conjugative plasmids. The DNA-binding protein KfrA encoded on the RA3 plasmid, a member of the IncU incompatibility group, oligomerizes, forms a complex with another plasmid-encoded, alpha-helical protein, KfrC, and interacts with the segrosome proteins IncC and KorB. The unique mode of KfrA dimer binding to the repetitive operator is required for a KfrA role in the stable maintenance of RA3 plasmid in distinct hosts.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Gipsi Lima-Mendez ◽  
Danillo Oliveira Alvarenga ◽  
Karen Ross ◽  
Bernard Hallet ◽  
Laurence Van Melderen ◽  
...  

ABSTRACT Much of the diversity of prokaryotic genomes is contributed by the tightly controlled recombination activity of transposons (Tns). The Tn3 family is arguably one of the most widespread transposon families. Members carry a large range of passenger genes incorporated into their structures. Family members undergo replicative transposition using a DDE transposase to generate a cointegrate structure which is then resolved by site-specific recombination between specific DNA sequences (res) on each of the two Tn copies in the cointegrate. These sites also carry promoters controlling expression of the recombinase and transposase. We report here that a number of Tn3 members encode a type II toxin-antitoxin (TA) system, typically composed of a stable toxin and a labile antitoxin that binds the toxin and inhibits its lethal activity. This system serves to improve plasmid maintenance in a bacterial population and, until recently, was believed to be associated with bacterial persistence. At least six different TA gene pairs are associated with various Tn3 members. Our data suggest that several independent acquisition events have occurred. In contrast to most Tn3 family passenger genes, which are generally located away from the transposition module, the TA gene pairs abut the res site upstream of the resolvase genes. Although their role when part of Tn3 family transposons is unclear, this finding suggests a potential role for the embedded TA in stabilizing the associated transposon with the possibility that TA expression is coupled to expression of transposase and resolvase during the transposition process itself. IMPORTANCE Transposable elements (TEs) are important in genetic diversification due to their recombination properties and their ability to promote horizontal gene transfer. Over the last decades, much effort has been made to understand TE transposition mechanisms and their impact on prokaryotic genomes. For example, the Tn3 family is ubiquitous in bacteria, molding their host genomes by the paste-and-copy mechanism. In addition to the transposition module, Tn3 members often carry additional passenger genes (e.g., conferring antibiotic or heavy metal resistance and virulence), and three were previously known to carry a toxin-antitoxin (TA) system often associated with plasmid maintenance; however, the role of TA systems within the Tn3 family is unknown. The genetic context of TA systems in Tn3 members suggests that they may play a regulatory role in ensuring stable invasion of these Tns during transposition.


2019 ◽  
Author(s):  
Gipsi Lima-Mendez ◽  
Danillo Oliveira Alvarenga ◽  
Karen Ross ◽  
Bernard Hallet ◽  
Laurence Van Melderen ◽  
...  

AbstractMuch of the diversity of prokaryotic genomes is contributed by the tightly controlled recombination activity of transposons (Tn). The Tn3 family is arguably one of the most widespread transposon families. Members carry a large range of passenger genes incorporated into their structures. Family members undergo replicative transposition using a DDE transposase to generate a cointegrate structure which is then resolved by site-specific recombination between specific DNA sequences (res) on each of the two Tn copies in the cointegrate. These sites also carry promoters controlling expression of the recombinase and transposase. We report here that a number of Tn3 members encode a type II toxin-antitoxin (TA) system, typically composed of a stable toxin and a labile antitoxin that binds the toxin and inhibits its lethal activity. This system serves to improve plasmid maintenance in a bacterial population and, until recently, was believed to be associated with bacterial persistence. At least six different TA gene pairs are associated with various Tn3 members. Our data suggest that several independent acquisition events have occurred. In contrast to most Tn3 family passenger genes which are generally located away from the transposition module, the TA gene pairs abut the res site upstream of the resolvase genes. Although their role when part of Tn3 family transposons is unclear, this finding suggests a potential role for the embedded TA in stabilizing the associated transposon with the possibility that TA expression is coupled to expression of transposase and resolvase during the transposition process itself.ImportanceTransposable Elements (TEs) are important in genetic diversification due to their recombination properties and their ability to promote horizontal gene transfer. Over the last decades, much effort has been made to understand TE transposition mechanisms and their impact on prokaryotic genomes. For example, the Tn3 family is ubiquitous in bacteria, moulding their host genomes by the paste-and-copy mechanism. In addition to the transposition module, Tn3 members often carry additional passenger genes (e.g., conferring antibiotic or heavy metal resistance and virulence) and three were previously known to carry a toxin-antitoxin (TA) system often associated with plasmid maintenance; however, the role of TA systems within the Tn3 family is unknown. The genetic context of TA systems in Tn3 members suggests that they may play a regulatory role in ensuring stable invasion of these Tn during transposition.


2019 ◽  
Vol 17 ◽  
pp. 70-81 ◽  
Author(s):  
Hirokazu Yano ◽  
Masaki Shintani ◽  
Masaru Tomita ◽  
Haruo Suzuki ◽  
Taku Oshima

2018 ◽  
Author(s):  
Sooyeon Song ◽  
Thomas Wood

The toxin/antitoxin (TA) field, born of controversy, is plagued by several prevailing misperceptions. For example, some TA systems stabilize plasmids and other genomic regions; however, the evidence of post-segregational killing by toxins of TA systems is weak. In addition, there are few credible reports of cell death via TA systems like MazF/MazE and via phage exclusion systems. Although many aspects of the biological roles of TA systems remain enigmatic, there are now some clear, confirmed TA functions: (i) phage inhibition, (ii) plasmid maintenance, (iii) stress response (including regulation of loci distinct from the TA pair itself), (iv) biofilm formation, and (v) persistence. Therefore, this opinion piece aims to challenge the oft-repeated dogma related to TA systems with the goal of emphasizing their primary biological role: constraining metabolism in a reversible manner. Hence, their roles in their five confirmed functions all stem from their ability to rapidly and reversibly reduce metabolic activity.


2017 ◽  
Vol 199 (19) ◽  
Author(s):  
Kritika Gupta ◽  
Arti Tripathi ◽  
Alishan Sahu ◽  
Raghavan Varadarajan

ABSTRACT One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain (ccd O157) and the ccd operon from the F plasmid (ccd F), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccd F and ccd O157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence. IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple antibiotic stress conditions. This has implications for generation of potential therapeutics that target these TA systems and has clinical significance because the presence of persisters in an antibiotic-treated population can lead to resuscitation of chronic infection and may contribute to failure of antibiotic treatment.


Sign in / Sign up

Export Citation Format

Share Document