scholarly journals Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method

2014 ◽  
Vol 24 (1) ◽  
pp. 68-74 ◽  
Author(s):  
M. Ebrahimi ◽  
F. Djavanroodi
2015 ◽  
Vol 641 ◽  
pp. 278-285
Author(s):  
Jacek Skiba ◽  
Adam Dominiak ◽  
Tomasz S. Wiśniewski ◽  
Wacek Pachla ◽  
Mariusz Kulczyk ◽  
...  

The study is aimed at comparing the changes which occur in the microstructure and thermo-physical properties of pure copper (99.9%) and when copper alloyed with chromium and zirconium subjected to severe plastic deformation (SPD). The plastic deformation techniques employed were hydrostatic extrusion (HE), equal channel angular pressing (ECAP), and a combination of these two processes. The materials thus obtained had an ultra-fine-grained structure with the thermo-physical properties differing from those of the untreated materials. It appeared that there is a correlation between the deformation method employed and the thermo-physical properties of the materials, such as diffusivity and specific heat.


2013 ◽  
Vol 43 ◽  
pp. 492-498 ◽  
Author(s):  
Chengpeng Wang ◽  
Fuguo Li ◽  
Qinghua Li ◽  
Jiang Li ◽  
Lei Wang ◽  
...  

2010 ◽  
Vol 297-301 ◽  
pp. 1312-1321 ◽  
Author(s):  
Vladimir V. Popov ◽  
A.V. Stolbovkiy ◽  
E.N. Popova ◽  
V.P. Pilyugin

Evolution of structure of high-purity and commercially pure copper at severe plastic deformation (SPD) by high pressure torsion (HPT) at room temperature and in liquid nitrogen has been studied by transmission electron microscopy (TEM) and measurements of microhardness. Thermal stability of structure obtained by HPT has been investigated. Factors preventing from obtaining nanocrystalline structure in Cu are analyzed and possible ways of their overcoming are discussed.


Sign in / Sign up

Export Citation Format

Share Document