cyclic extrusion compression
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Alireza Babaei ◽  
Firooz Esmaeili-Goldarag ◽  
Hossein Jafarzadeh

The aim of this study is an experimental and numerical investigation of the fatigue behavior of a notched ultrafine-grained pure aluminum processed by strip cyclic extrusion-compression method. In this regard, the fatigue experiments were conducted for the unprocessed and strip cyclic extrusion-compression processed specimens under various cyclic loads. In the numerical analyses, a dislocation dynamic constitutive material model which tracks the microstructure evolution was implemented for numerical estimation of the values of fatigue strength reduction factor via the volumetric approach. Considering the three-dimensional effect near the plate hole, the variation of the fatigue notch factor through the thickness of the plate was investigated and the obtained results showed that maximum fatigue strength reduction factor was occurred in the middle of the plate due to the symmetry of specimen geometry and loading condition. The investigation reveals a good agreement between the numerical and experimental lives. The results showed although the smooth processed specimens have higher fatigue strength in comparison of the unprocessed ones, the notched processed specimens have lower fatigue strength in comparison of the unprocessed ones.


2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


Sign in / Sign up

Export Citation Format

Share Document