Rapid and low-cost detection of moldy apple core based on an optical sensor system

2020 ◽  
Vol 168 ◽  
pp. 111276
Author(s):  
Long Li ◽  
Yankun Peng ◽  
Yongyu Li ◽  
Cheng Yang ◽  
Kuanglin Chao
1994 ◽  
Author(s):  
Masaaki Mokuno ◽  
Isao Kawano ◽  
Hiroshi Horiguchi ◽  
Koichi Kibe
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 645
Author(s):  
Kristen Okorn ◽  
Michael Hannigan

As low-cost sensors have become ubiquitous in air quality measurements, there is a need for more efficient calibration and quantification practices. Here, we deploy stationary low-cost monitors in Colorado and Southern California near oil and gas facilities, focusing our analysis on methane and ozone concentration measurement using metal oxide sensors. In comparing different sensor signal normalization techniques, we propose a z-scoring standardization approach to normalize all sensor signals, making our calibration results more easily transferable among sensor packages. We also attempt several different physical co-location schemes, and explore several calibration models in which only one sensor system needs to be co-located with a reference instrument, and can be used to calibrate the rest of the fleet of sensor systems. This approach greatly reduces the time and effort involved in field normalization without compromising goodness of fit of the calibration model to a significant extent. We also explore other factors affecting the performance of the sensor system quantification method, including the use of different reference instruments, duration of co-location, time averaging, transferability between different physical environments, and the age of metal oxide sensors. Our focus on methane and stationary monitors, in addition to the z-scoring standardization approach, has broad applications in low-cost sensor calibration and utility.


2015 ◽  
Vol 214 ◽  
pp. 211-217 ◽  
Author(s):  
Kevin Murphy ◽  
Timothy Sullivan ◽  
Brendan Heery ◽  
Fiona Regan

2015 ◽  
Author(s):  
S. Rota-Rodrigo ◽  
R. Pérez-Herrera ◽  
A. Lopez-Aldaba ◽  
M. C. López Bautista ◽  
O. Esteban ◽  
...  

2019 ◽  
Author(s):  
L. Chen ◽  
U. Cikalova ◽  
B. Bendjus ◽  
S. Muench ◽  
M. Roellig

2018 ◽  
Vol 43 ◽  
pp. 82-89 ◽  
Author(s):  
Arnaldo G. Leal-Junior ◽  
Laura Vargas-Valencia ◽  
Wilian M. dos Santos ◽  
Felipe B.A. Schneider ◽  
Adriano A.G. Siqueira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document