scholarly journals Microstructured Surface Plasmon Resonance Sensor Based on Inkjet 3D Printing Using Photocurable Resins with Tailored Refractive Index

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1516
Author(s):  
Lian Liu ◽  
Shijie Deng ◽  
Jie Zheng ◽  
Libo Yuan ◽  
Hongchang Deng ◽  
...  

An enhanced plastic optical fiber (POF)-based surface plasmon resonance (SPR) sensor is proposed by employing a double-sided polished structure. The sensor is fabricated by polishing two sides of the POF symmetrically along with the fiber axis, and a layer of Au film is deposited on each side of the polished region. The SPR can be excited on both polished surfaces with Au film coating, and the number of light reflections will be increased by using this structure. The simulation and experimental results show that the proposed sensor has an enhanced SPR effect. The visibility and full width at half maximum (FWHM) of spectrum can be improved for the high measured refractive index (RI). A sensitivity of 4284.8 nm/RIU is obtained for the double-sided POF-based SPR sensor when the measured liquid RI is 1.42. The proposed SPR sensor is easy fabrication and low cost, which can provide a larger measurement range and action area to the measured samples, and it has potential application prospects in the oil industry and biochemical sensing fields.


2021 ◽  
Vol 1147 ◽  
pp. 23-29
Author(s):  
Chutiparn Lertvachirapaiboon ◽  
Akira Baba ◽  
Kazunari Shinbo ◽  
Keizo Kato

2021 ◽  
Vol 11 (7) ◽  
pp. 2963
Author(s):  
Nur Alia Sheh Omar ◽  
Yap Wing Fen ◽  
Irmawati Ramli ◽  
Umi Zulaikha Mohd Azmi ◽  
Hazwani Suhaila Hashim ◽  
...  

A novel vanadium–cellulose composite thin film-based on angular interrogation surface plasmon resonance (SPR) sensor for ppb-level detection of Ni(II) ion was developed. Experimental results show that the sensor has a linear response to the Ni(II) ion concentrations in the range of 2–50 ppb with a determination coefficient (R2) of 0.9910. This SPR sensor can attain a maximum sensitivity (0.068° ppb−1), binding affinity constant (1.819 × 106 M−1), detection accuracy (0.3034 degree−1), and signal-to-noise-ratio (0.0276) for Ni(II) ion detection. The optical properties of thin-film targeting Ni(II) ions in different concentrations were obtained by fitting the SPR reflectance curves using the WinSpall program. All in all, the proposed Au/MPA/V–CNCs–CTA thin-film-based surface plasmon resonance sensor exhibits better sensing performance than the previous film-based sensor and demonstrates a wide and promising technology candidate for environmental monitoring applications in the future.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 455
Author(s):  
Wei Du ◽  
Lucas Miller ◽  
Feng Zhao

A new waveguide-based surface plasmon resonance (SPR) sensor was proposed and investigated by numerical simulation. The sensor consists of a graphene cover layer, a gold (Au) thin film, and a silicon carbide (SiC) waveguide layer on a silicon dioxide/silicon (SiO2/Si) substrate. The large bandgap energy of SiC allows the sensor to operate in the visible and near-infrared wavelength ranges, which effectively reduces the light absorption in water to improve the sensitivity. The sensor was characterized by comparing the shift of the resonance wavelength peak with change of the refractive index (RI), which mimics the change of analyte concentration in the sensing medium. The study showed that in the RI range of 1.33~1.36, the sensitivity was improved when the graphene layers were increased. With 10 graphene layers, a sensitivity of 2810 nm/RIU (refractive index unit) was achieved, corresponding to a 39.1% improvement in sensitivity compared to the Au/SiC sensor without graphene. These results demonstrate that the graphene/Au/SiC waveguide SPR sensor has a promising use in portable biosensors for chemical and biological sensing applications, such as detection of water contaminations (RI = 1.33~1.34), hepatitis B virus (HBV), and glucose (RI = 1.34~1.35), and plasma and white blood cells (RI = 1.35~1.36) for human health and disease diagnosis.


2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Hood-Hong Ley ◽  
Asiah Yahaya ◽  
Yusof Munajat

Performance of a surface plasmon resonance (SPR) sensor based on Kretchmann configuration for silver (Ag) film is evaluated via theoretical simulation. The film thickness and incident angle are varied to obtain the SPR wavelength in the range of 500-550 nm. Shift of SPR wavelength with refractive index of the dielectric defines the sensitivity whereas the resolution is obtained from the ratio of the instrumental resolution to the sensitivity. The SPR sensor shows increasing sensitivity for thicker film however the absorption magnitudes of such films are high and unfavourable for data acquisition. Film thickness of 45 nm and 50 nm which has good sensitivity and resolution with high absorbance magnitude of the SPR wavelength is the best thickness to be employed for sensing purpose.


Nanophotonics ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1941-1951
Author(s):  
Jiaqi Zhu ◽  
Yuxuan Ke ◽  
Jianfeng Dai ◽  
Qi You ◽  
Leiming Wu ◽  
...  

AbstractSurface plasmon resonance (SPR) sensors have been applied in a wide range of applications for real-time and label-free detection. In this article, by covering the topological insulators nanosheets on the surface of the noble metal (Au), the sensitivity of the SPR sensor is greatly enhanced because of the strong interaction of light with Au–bismuth selenide (Bi2Se3) heterostructure. It is shown that the sensitivity of proposed SPR sensors depends on the concentration of Bi2Se3 solution or the thickness of the coated Bi2Se3 film. The optimised sensitivity (2929.1 nm/RIU) and figure of merit (33.45 RIU−1) have been obtained after three times drop-casting, and the enhancement sensitivity of proposed sensors is up to 51.97% compared to the traditional Au–SPR sensors. Meanwhile, the reflection spectrum is simulated by using the method of effective refractive index, and the reason for the increase of sensitivity is analysed theoretically. For researching the application of modified SPR sensor, heavy metal detection is employed to detect in the last part. Our proposed SPR sensors have potential applications in heavy metal detections and biosensing.


2013 ◽  
Vol 411-414 ◽  
pp. 1573-1576 ◽  
Author(s):  
Nan Nan Luan ◽  
Jian Quan Yao ◽  
Ran Wang ◽  
Cong Jing Hao ◽  
Bao Qun Wu ◽  
...  

The surface plasmon resonance (SPR) sensor is proposed based on coating the inner surfaces of an index-guiding microstructured optical fiber (MOF) with a silver layer. Fiber core is surrounded by six large metallized holes which should facilitate the fabrication of the layered sensor structure and the infiltration of the analyte. The relationship between the sensitivity of SPR sensor and the refractive index of MOF material is demonstrated with finite element method (FEM). Numerical simulation results indicate that the sensitivity of SPR sensor decreases as the refractive index of the MOF material increasing and both spectral and intensity sensitivity are estimated to be 6.25×10-5and 6.67×10-5with low refractive index of MOF materialn=1.46.


2021 ◽  
Author(s):  
Iulia ANTOHE ◽  
Iuliana IORDACHE ◽  
Vlad-Andrei ANTOHE ◽  
Gabriel SOCOL

Abstract The paper reports for the first time an innovative polyaniline (PANI)/platinum (Pt)-coated fiber optic – surface plasmon resonance (FO-SPR) sensor used for highly-sensitive 4-nitrophenol (4-NP) pollutant detection. The Pt thin film was coated over an unclad core of an optical fiber (FO) using a DC magnetron sputtering technique, while the 4-NP responsive PANI layer was synthetized using a cost-effective electroless polymerization method. The presence of the electrolessly-grown PANI on the Pt-coated FO was observed by field-emission scanning electron microscopy (FE-SEM) and subsequently evidenced by energy dispersive X-ray analysis (EDX). These FO-SPR sensors with a demonstrated sensitivity of 1515 nm/RIU were then employed for 4-NP sensing, exhibiting am excellent limit of detection (LOD) in the low picomolar range (0.17 pM). The proposed sensor’s configuration has many other advantages, such as low-cost production, small size, immunity to electromagnetic interferences, remote sensing capability, and moreover, can be operated as a “stand-alone device”, making it thus well-suited for applications such as “on-site” screening of extremely low-level trace pollutants.


Sign in / Sign up

Export Citation Format

Share Document