Relation between fragmented QRS complex to the right ventricular volumes and fraction of pulmonary regurgitation in patients with repaired tetralogy of Fallot

2019 ◽  
Vol 52 ◽  
pp. 13-17
Author(s):  
Ahmed El-Boraey ◽  
Ahmed El-Damaty ◽  
Heba El-Deeb ◽  
Mohamed Eshra ◽  
Ahmed Kharabish ◽  
...  
2018 ◽  
Vol 315 (6) ◽  
pp. H1691-H1702 ◽  
Author(s):  
Pia Sjöberg ◽  
Johannes Töger ◽  
Erik Hedström ◽  
Per Arvidsson ◽  
Einar Heiberg ◽  
...  

Intracardiac hemodynamic forces have been proposed to influence remodeling and be a marker of ventricular dysfunction. We aimed to quantify the hemodynamic forces in patients with repaired tetralogy of Fallot (rToF) to further understand the pathophysiological mechanisms as this could be a potential marker for pulmonary valve replacement (PVR) in these patients. Patients with rToF and pulmonary regurgitation (PR) > 20% ( n = 18) and healthy control subjects ( n = 15) underwent MRI, including four-dimensional flow. A subset of patients ( n = 8) underwent PVR and MRI after surgery. Time-resolved hemodynamic forces were quantified using 4D-flow data and indexed to ventricular volume. Patients had higher systolic and diastolic left ventricular (LV) hemodynamic forces compared with control subjects in the lateral-septal/LV outflow tract ( P = 0.011 and P = 0.0031) and inferior-anterior ( P < 0.0001 and P < 0.0001) directions, which are forces not aligned with blood flow. Forces did not change after PVR. Patients had higher RV diastolic forces compared with control subjects in the diaphragm-right ventricular (RV) outflow tract (RVOT; P < 0.001) and apical-basal ( P = 0.0017) directions. After PVR, RV systolic forces in the diaphragm-RVOT direction decreased ( P = 0.039) to lower levels than in control subjects ( P = 0.0064). RV diastolic forces decreased in all directions ( P = 0.0078, P = 0.0078, and P = 0.039) but were still higher than in control subjects in the diaphragm-RVOT direction ( P = 0.046). In conclusion, patients with rToF and PR had LV hemodynamic forces less aligned with intraventricular blood flow compared with control subjects and higher diastolic RV forces along the regurgitant flow direction in the RVOT and that of tricuspid inflow. Remaining force differences in the LV and RV after PVR suggest that biventricular pumping does not normalize after surgery. NEW & NOTEWORTHY Biventricular hemodynamic forces in patients with repaired tetralogy of Fallot and pulmonary regurgitation were quantified for the first time. Left ventricular hemodynamic forces were less aligned to the main blood flow direction in patients compared with control subjects. Higher right ventricular forces were seen along the pulmonary regurgitant and tricuspid inflow directions. Differences in forces versus control subjects remain after pulmonary valve replacement, suggesting that altered biventricular pumping does not normalize after surgery.


2020 ◽  
Vol 128 (6) ◽  
pp. 1677-1683
Author(s):  
Wei Hui ◽  
Cameron Slorach ◽  
Susan Iori ◽  
Andreea Dragulescu ◽  
Luc Mertens ◽  
...  

This is the first study to assess right ventricular myocardial performance using the systolic-to-diastolic duration ratio derived from 2D strain. Seventy-six children with repaired Tetralogy of Fallot were evaluated. Echocardiographic data were correlated with cardiac magnetic resonance and peak oxygen consumption during exercise. The results show the right ventricular myocardial systolic-to-diastolic duration ratio incorporates systolic and diastolic performance, electromechanical dyssynchrony, and postsystolic shortening and is associated with exercise capacity in repaired Tetralogy of Fallot.


2019 ◽  
Vol 21 (8) ◽  
pp. 906-913 ◽  
Author(s):  
Imran Rashid ◽  
Adil Mahmood ◽  
Tevfik F Ismail ◽  
Shamus O’Meagher ◽  
Shelby Kutty ◽  
...  

Abstract Aims The optimal timing for pulmonary valve replacement in asymptomatic patients with repaired Tetralogy of Fallot (rTOF) and pulmonary regurgitation remains uncertain but is often guided by increases in right ventricular (RV) end-diastolic volume. As cardiopulmonary exercise testing (CPET) performance is a strong prognostic indicator, we assessed which cardiovascular magnetic resonance (CMR) parameters correlate with reductions in exercise capacity to potentially improve identification of high-risk patients. Methods and results In all, 163 patients with rTOF (mean age 24.5 ± 10.2 years) who had previously undergone CMR and standardized CPET protocols were included. The indexed right and left ventricular end-diastolic volumes (RVEDVi, LVEDVi), right and left ventricular ejection fractions (RVEF, LVEF), indexed RV stroke volume (RVSVi), and pulmonary regurgitant fraction (PRF) were quantified by CMR and correlated with CPET-determined peak oxygen consumption (VO2) or peak work. On univariable analysis, there was no significant correlation between RVEDVi and PRF with peak VO2 or peak work (% Jones-predicted). In contrast, RVEF and RVSVi had significant correlations with both peak VO2 and peak work that remained significant on multivariable analysis. For a previously established prognostic peak VO2 threshold of &lt;27 mL/kg/min, receiver-operating characteristic curve analysis demonstrated a Harrell’s c of 0.70 for RVEF (95% confidence interval 0.61–0.79) with a sensitivity of 88% for RVEF &lt;40%. Conclusion In rTOF, CMR indices of RV systolic function are better predictors of CPET performance than RV size. An RVEF &lt;40% may be useful to identify prognostically significant reductions in exercise capacity in patients with varying degrees of RV dilatation.


2014 ◽  
Vol 3 ◽  
pp. 28-31 ◽  
Author(s):  
Shamus O’Meagher ◽  
Madhusudan Ganigara ◽  
David J. Tanous ◽  
David S. Celermajer ◽  
Rajesh Puranik

Sign in / Sign up

Export Citation Format

Share Document