cardiopulmonary exercise testing
Recently Published Documents


TOTAL DOCUMENTS

1820
(FIVE YEARS 664)

H-INDEX

66
(FIVE YEARS 7)

Author(s):  
Kathrin Rottermann ◽  
Annika Weigelt ◽  
Tim Stäbler ◽  
Benedikt Ehrlich ◽  
Sven Dittrich ◽  
...  

Abstract Purpose Cardiopulmonary exercise testing (CPET) in preschoolers (4–6 years) represents a challenge. Most studies investigating CPET have been limited to older children (> 8 year). However, knowledge of the performance of small children is essential for evaluating their cardiorespiratory fitness. This study strives to compare a modified Bruce protocol with a new age-appropriate incremental CPET during natural movement running outdoors, using a mobile device. Methods A group of 22 4–6-year-old healthy children was tested indoor on a treadmill (TM) using the modified Bruce protocol. The results were compared with a self-paced incremental running test, using a mobile CPET device in an outdoor park. The speeds were described as (1) slow walking, (2) slow running, (3) regular running, and (4) running with full speed as long as possible. Results Mean exercise time outdoors (6,57 min) was significantly shorter than on the treadmill (11,20 min), $$\dot{V}{O}_{2peak}$$ V ˙ O 2 p e a k (51.1 ml/min/kg vs. 40.1 ml/min/kg), RER (1.1 vs. 0.98) and important CPET parameters such as $$\dot{V}E$$ V ˙ E max, O2pulse, heart rate and breath rate were significantly higher outdoors. The submaximal parameter OUES was comparable between both the tests. Conclusions Testing very young children with a mobile device is a new alternative to treadmill testing. With a significantly shorter test duration, significantly higher values for almost all cardiopulmonary variables can be achieved without losing the ability to determine VT1 and VT2. It avoids common treadmill problems and allows for individualized exercise testing. The aim is to standardize exercise times with individual protocols instead of standardizing protocols with individual exercise times, allowing for better comparability.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0259638
Author(s):  
Jae-Man Lee ◽  
Hyun-Bin Park ◽  
Jin-Eun Song ◽  
In-Cheol Kim ◽  
Ji-Hun Song ◽  
...  

Background Sudden cardiac death (SCD) and stroke-related events accompanied by atrial fibrillation (AF) can affect morbidity and mortality in hypertrophic cardiomyopathy (HCM). This study sought to evaluate a scoring system predicting cardio-cerebral events in HCM patients using cardiopulmonary exercise testing (CPET). Methods We investigated the role of a previous prediction model based on CPET, the HYPertrophic Exercise-derived Risk score for Heart Failure-related events (HyperHF), which is derived from peak circulatory power ventilatory efficiency and left atrial diameter (LAD), for predicting a composite of SCD-related (SCD, serious ventricular arrhythmia, death from cardiac cause, heart failure admission) and stroke-related (new-onset AF, acute stroke) events. The Novel HyperHF risk model using left atrial volume index (LAVI) instead of LAD was proposed and compared with the previous HCM Risk-SCD model. Results A total of 295 consecutive HCM patients (age 59.9±13.2, 71.2% male) who underwent CPET was included in the present study. During a median follow-up of 742 days (interquartile range 384–1047 days), 29 patients (9.8%) experienced an event (SCD-related event: 14 patients (4.7%); stroke-related event: 17 patients (5.8%)). The previous model for SCD risk score showed fair prediction ability (AUC of HCM Risk-SCD 0.670, p = 0.002; AUC of HyperHF 0.691, p = 0.001). However, the prediction power of Novel HyperHF showed the highest value among the models (AUC of Novel HyperHF 0.717, p<0.001). Conclusions Both conventional HCM Risk-SCD score and CPET-derived HyperHF score were useful for prediction of overall risk of SCD-related and stroke-related events in HCM. Novel HyperHF score using LAVI could be utilized for a better prediction power.


2022 ◽  
Vol 9 (1) ◽  
pp. 26
Author(s):  
Benedetta Leonardi ◽  
Federica Gentili ◽  
Marco Alfonso Perrone ◽  
Fabrizio Sollazzo ◽  
Lucia Cocomello ◽  
...  

Patients with repaired Tetralogy of Fallot (rToF) typically report having preserved subjective exercise tolerance. Chronic pulmonary regurgitation (PR) with varying degrees of right ventricular (RV) dilation as assessed by cardiac magnetic resonance imaging (MRI) is prevalent in rToF and may contribute to clinical compromise. Cardiopulmonary exercise testing (CPET) provides an objective assessment of functional capacity, and the International Physical Activity Questionnaire (IPAQ) can provide additional data on physical activity (PA) achieved. Our aim was to assess the association between CPET values, IPAQ measures, and MRI parameters. All rToF patients who had both an MRI and CPET performed within one year between March 2019 and June 2021 were selected. Clinical data were extracted from electronic records (including demographic, surgical history, New York Heart Association (NYHA) functional class, QRS duration, arrhythmia, MRI parameters, and CPET data). PA level, based on the IPAQ, was assessed at the time of CPET. Eighty-four patients (22.8 ± 8.4 years) showed a reduction in exercise capacity (median peak VO2 30 mL/kg/min (range 25–33); median percent predicted peak VO2 68% (range 61–78)). Peak VO2, correlated with biventricular stroke volumes (RVSV: β = 6.11 (95%CI, 2.38 to 9.85), p = 0.002; LVSV: β = 15.69 (95% CI 10.16 to 21.21), p < 0.0001) and LVEDVi (β = 8.74 (95%CI, 0.66 to 16.83), p = 0.04) on multivariate analysis adjusted for age, gender, and PA level. Other parameters which correlated with stroke volumes included oxygen uptake efficiency slope (OUES) (RVSV: β = 6.88 (95%CI, 1.93 to 11.84), p = 0.008; LVSV: β = 17.86 (95% CI 10.31 to 25.42), p < 0.0001) and peak O2 pulse (RVSV: β = 0.03 (95%CI, 0.01 to 0.05), p = 0.007; LVSV: β = 0.08 (95% CI 0.05 to 0.11), p < 0.0001). On multivariate analysis adjusted for age and gender, PA level correlated significantly with peak VO2/kg (β = 0.02, 95% CI 0.003 to 0.04; p = 0.019). We observed a reduction in objective exercise tolerance in rToF patients. Biventricular stroke volumes and LVEDVi were associated with peak VO2 irrespective of RV size. OUES and peak O2 pulse were also associated with biventricular stroke volumes. While PA level was associated with peak VO2, the incremental value of this parameter should be the focus of future studies.


2022 ◽  
pp. 2101821
Author(s):  
Jenna McNeill ◽  
Ariel Chernofsky ◽  
Matthew Nayor ◽  
Farbod N. Rahaghi ◽  
Raul San Jose Estepar ◽  
...  

IntroductionCardiorespiratory fitness is not limited by pulmonary mechanical reasons in the majority of adults. However, the degree to which lung function contributes to exercise response patterns among ostensibly healthy individuals remains unclear.MethodsWe examined 2314 Framingham Heart Study participants who underwent cardiopulmonary exercise testing (CPET) and pulmonary function testing. We investigated the association of FEV1, FVC, FEV1/FVC and DLCO with the primary outcome of peak VO2, along with other CPET parameters using multivariable linear regression. Finally, we investigated the association of total and peripheral pulmonary blood vessel volume with peak VO2.ResultsWe found lower FEV1, FVC and DLCO were associated with lower peak VO2. For example, a one-liter lower FEV1 and FVC were associated with 7.1% (95% CI: 5.1%, 9.1%) and 6.0% (95% CI: 4.3%, 7.7%) lower peak VO2, respectively. By contrast, FEV1/FVC ratio was not associated with peak VO2. Lower lung function was associated with lower oxygen uptake efficiency slope oxygen pulse slope, VO2 at AT, VE at AT and breathing reserve. In addition, lower total and peripheral pulmonary blood vessel volume were associated with a lower peak VO2.ConclusionIn a large, community-based cohort of adults, we found lower FEV1, FVC and DLCO were associated with lower exercise capacity, as well as oxygen uptake efficiency slope and ventilatory efficiency. In addition, lower total and peripheral pulmonary blood vessel volume were associated with lower peak VO2. These findings underscore the importance of lung function and blood vessel volume as contributors to overall exercise capacity.


Author(s):  
Fang Li ◽  
Chun-Hao Chang ◽  
Chia-An Ho ◽  
Cheng-You Wu ◽  
Hung-Chih Yeh ◽  
...  

The maximal oxygen uptake (VO2max) prediction models established by step tests are often used for evaluating cardiorespiratory fitness (CRF). However, it is unclear which type of stepping frequency sequence is more suitable for the public to assess the CRF. Therefore, the main purpose of this study was to test the effectiveness of two 3-min incremental step-in-place (3MISP) tests (i.e., 3MISP30s and 3MISP60s) with the same total number of steps but different step-frequency sequences in predicting VO2max. In this cross-sectional study, a total of 200 healthy adults in Taiwan completed 3MISP30s and 3MISP60s tests, as well as cardiopulmonary exercise testing. The 3MISP30s and 3MISP60s models were established through multiple stepwise regression analysis by gender, age, percent body fat, and 3MISP-heart rate. The statistical analysis included Pearson’s correlations, the standard errors of estimate, the predicted residual error sum of squares, and the Bland–Altman plot to compare the measured VO2max values and those estimated. The results of the study showed that the exercise intensity of the 3MISP30s test was higher than that of the 3MISP60s test (% heart rate reserve (HRR) during 3MISP30s vs. %HRR during 3MISP60s = 81.00% vs. 76.81%, p < 0.001). Both the 3MISP30s model and the 3MISP60s model explained 64.4% of VO2max, and the standard errors of the estimates were 4.2043 and 4.2090 mL·kg−1·min−1, respectively. The cross-validation results also indicated that the measured VO2max values and those predicted by the 3MISP30s and 3MISP60s models were highly correlated (3MISP30s model: r = 0.804, 3MISP60s model: r = 0.807, both p < 0.001). There was no significant difference between the measured VO2max values and those predicted by the 3MISP30s and 3MISP60s models in the testing group (p > 0.05). The results of the study showed that when the 3MISP60s test was used, the exercise intensity was significantly reduced, but the predictive effectiveness of VO2max did not change. We concluded that the 3MISP60s test was physiologically less stressful than the 3MISP30s test, and it could be a better choice for CRF evaluation.


2022 ◽  
pp. 1-7
Author(s):  
Thomas Couck ◽  
Roselien Buys ◽  
Béatrice Santens ◽  
Pieter De Meester ◽  
Kaatje Goetschalckx ◽  
...  

2022 ◽  
Vol 16 ◽  
pp. 175346662110701
Author(s):  
Marcella Burghard ◽  
Tim Takken ◽  
Merel M. Nap-van der Vlist ◽  
Sanne L. Nijhof ◽  
C. Kors van der Ent ◽  
...  

Objectives: [1] To investigate the cardiorespiratory fitness (CRF) levels in children and adolescents with cystic fibrosis (CF) with no ventilatory limitation (ventilatory reserve ⩾ 15%) during exercise, and [2] to assess which physiological factors are related to CRF. Methods: A cross-sectional study design was used in 8- to 18-year-old children and adolescents with CF. Cardiopulmonary exercise testing was used to determine peak oxygen uptake normalized to body weight as a measure of CRF. Patients were defined as having ‘low CRF’ when CRF was less than 82%predicted. Physiological predictors used in this study were body mass index z-score, P. Aeruginosa lung infection, impaired glucose tolerance (IGT) including CF-related diabetes, CF-related liver disease, sweat chloride concentration, and self-reported physical activity. Backward likelihood ratio (LR) logistic regression analysis was used. Results: Sixty children and adolescents (51.7% boys) with a median age of 15.3 years (25th–75th percentile: 12.9–17.0 years) and a mean percentage predicted forced expiratory volume in 1 second of 88.5% (±16.9) participated. Mean percentage predicted CRF (ppVO2peak/kg) was 81.4% (±12.4, range: 51%–105%). Thirty-three patients (55.0%) were classified as having ‘low CRF’. The final model that best predicted low CRF included IGT ( p = 0.085; Exp(B) = 6.770) and P. Aeruginosa lung infection (p = 0.095; Exp(B) = 3.945). This model was able to explain between 26.7% and 35.6% of variance. Conclusions: CRF is reduced in over half of children and adolescents with CF with normal ventilatory reserve. Glucose intolerance and P. Aeruginosa lung infection seem to be associated to low CRF in children and adolescents with CF.


Sign in / Sign up

Export Citation Format

Share Document