A smooth double spiral tool path generation and linking method for high-speed machining of multiply-connected pockets

2016 ◽  
Vol 46 ◽  
pp. 48-64 ◽  
Author(s):  
Bo Zhou ◽  
Jibin Zhao ◽  
Lun Li ◽  
Renbo Xia
2010 ◽  
Vol 102-104 ◽  
pp. 544-549 ◽  
Author(s):  
Chun Jiang Zhou ◽  
Hong Chun Chen

The development of surface high-speed machining has put forward higher demands for uniform cutting load and smooth cutting tool path. Most current tool-path planning methods are based on constant scallop height, but they have the disadvantage of path point redundancy during the path discretization process. To overcome the problem, a tool path generation method of equal approximation error in each step for free-form surface is presented based on geodesic principle and curvature judgment. In this method, the NURBS curve is employed to realize smooth transition for adjacent two tool paths in high-speed machining. A certain angle of inclination of flat-end milling cutter during multi-axis machining improves the machining efficiency. Because of the advantage of this machining condition, the cutter location point generation algorithm during the machining condition is given by the method. The method is verified and simulated by C++. Experiment results proved that it can obtain uniform cutting load and continuous smooth cutting tool path during surface high-speed machining by the proposed method.


Author(s):  
Jinting Xu ◽  
Yukun Ji ◽  
Yuwen Sun ◽  
Yuan-Shin Lee

This paper presents a new spiral smoothing method to generate smooth curved tool paths directly on mesh surfaces. Spiral tool paths are preferable for computer numerical control (CNC) milling, especially for high-speed machining. At present, most spiral tool path generation methods aim mainly for pocketing, and a few methods for machining complex surface also suffer from some inherent problems, such as selection of projecting direction, preprocessing of complex offset contours, easily affected by the mesh or mesh deformation. To address the limitations, a new spiral tool path method is proposed, in which the radial curves play a key role as the guiding curves for spiral tool path generation. The radial curve is defined as one on the mesh surface that connects smoothly one point on the mesh surface and its boundary. To reduce the complexity of constructing the radial curves directly on the mesh surface, the mesh surface is first mapped onto a circular region. In this region, the radial lines, starting from the center, are planned and then mapped inversely onto the mesh surface, thereby forming the desired radial curves. By traversing these radial curves using the proposed linear interpolation method, a polyline spiral is generated, and then, the unfavorable overcuts and undercuts are identified and eliminated by supplementing additional spiral points. Spline-based technique of rounding the corners is also discussed to smooth the polyline spiral, thereby obtaining a smooth continuous spiral tool path. This method is able to not only greatly simplify the construction of radial curves and spiral tool path but also to have the ability of processing and smoothing complex surfaces. Experimental results are presented to validate the proposed method.


2012 ◽  
Vol 538-541 ◽  
pp. 1308-1311
Author(s):  
Lin Xin Tang ◽  
Cong Qian Qi ◽  
Xiao Qing Zhou

Triangulating the point cloud get STL model, a planar spiral line can obtain by offset the STL mode. Along the Z axis projecting towards the Equidistant surface of STL model will get a spatial spiral line, it can be used in numerical control high speed machining.


2016 ◽  
Vol 88 (5-8) ◽  
pp. 2169-2178 ◽  
Author(s):  
Zhiping Liu ◽  
Xiongbing Li ◽  
Yongfeng Song ◽  
Bing Yi ◽  
Feng Chen

2001 ◽  
Vol 17 (3) ◽  
pp. 181-188 ◽  
Author(s):  
Chung-Fong You ◽  
Bor-Tyng Sheen ◽  
Tzu-Kuan Lin

Sign in / Sign up

Export Citation Format

Share Document