scholarly journals Micro- and Macro- Mechanical Properties of Pinless Friction Stir Welded Joints in AA5754 Aluminium Thin Sheets

Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 9-14 ◽  
Author(s):  
M. Simoncini ◽  
D. Ciccarelli ◽  
A. Forcellese ◽  
M. Pieralisi
2016 ◽  
Vol 25 (11) ◽  
pp. 4637-4648 ◽  
Author(s):  
S. A. Khodir ◽  
M. M. Z. Ahmed ◽  
Essam Ahmed ◽  
Shaymaa M. R. Mohamed ◽  
H. Abdel-Aleem

2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


2017 ◽  
Vol 62 (3) ◽  
pp. 1819-1825
Author(s):  
V.C. Sinha ◽  
S. Kundu ◽  
S. Chatterjee

AbstractIn the present study, the effect of tool rotational speed on microstructure and mechanical properties of friction stir welded joints between commercially pure copper and 6351 Al alloy was carried out in the range of tool rotational speeds of 300-900 rpm in steps of 150 rpm at 30 mm/minutes travel speed. Up to 450 rpm, the interface of the joints is free from intermetallics and Al4Cu9intermetallic has been observed at the stir zone. However, Al4Cu9intermetallic was observed both at the interface and the stir zone at 600 rpm. At 750 and 900 rpm tool rotational speed, the layers of AlCu, Al2Cu3and Al4Cu9intermetallics were observed at the interface and only Al4Cu9intermetallics has been observed in the stir zone. The maximum ultimate tensile strength of ~207 MPa and yield strength of ~168 MPa along with ~6.2% elongation at fracture of the joint have been obtained when processed at 450 rpm tool rotational speed.


Sign in / Sign up

Export Citation Format

Share Document