scholarly journals Evaluating Convolutional Neural Network for Effective Mobile Malware Detection

2017 ◽  
Vol 112 ◽  
pp. 2372-2381 ◽  
Author(s):  
Fabio Martinelli ◽  
Fiammetta Marulli ◽  
Francesco Mercaldo
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Songjie Wei ◽  
Zedong Zhang ◽  
Shasha Li ◽  
Pengfei Jiang

In response to the surging challenge in the number and types of mobile malware targeting smart devices and their sophistication in malicious behavior camouflage, we propose to compose a traffic behavior modeling method based on one-dimensional convolutional neural network with autoencoder and independent recurrent neural network (1DCAE-IndRNN) for mobile malware detection. The design solves the problem that most existing approaches for mobile malware traffic detection struggle with capturing the network traffic dynamics and the sequential characteristics of anomalies in the traffic. We reconstruct and apply the one-dimensional convolutional neural network to extract local features from multiple network flows. The autoencoder is applied to digest the principal traffic features from the neural network and is integrated into the independent recurrent neural network construction to highlight the sequential relationship between the highly significant features. In addition, the Softmax function with the LReLU activation function is adjusted and embedded to the neurons of the independent recurrent neural network to effectively alleviate the problem of unstable training. We conduct a series of experiments to evaluate the effectiveness of the proposed method and its performance for the 1DCAE-IndRNN-integrated detection procedure. The detection results of the public Android malware dataset CICAndMal2017 show that the proposed method achieves up to 98% detection accuracy and recall rates with clear advantages over other benchmark methods.


2017 ◽  
Vol 26 (3) ◽  
pp. 891-919 ◽  
Author(s):  
Ping Yan ◽  
Zheng Yan

Author(s):  
Sebastian Panman de Wit ◽  
Doina Bucur ◽  
Jeroen van der Ham

Mobile malware are malicious programs that target mobile devices. They are an increasing problem, as seen in the rise of detected mobile malware samples per year. The number of active smartphone users is expected to grow, stressing the importance of research on the detection of mobile malware. Detection methods for mobile malware exist but are still limited. In this paper, we propose dynamic malware-detection methods that use device information such as the CPU usage, battery usage, and memory usage for the detection of 10 subtypes of Mobile Trojans on the Android Operating System (OS). We use a real-life sensor dataset containing device and malware data from 47 users for a year (2016) to create multiple mobile malware detection methods. We examine which features, i.e. aspects, of a device, are most important to monitor to detect (subtypes of) Mobile Trojans. The focus of this paper is on dynamic hardware features. Using these dynamic features we apply the following machine learning classifiers: Random Forest, K-Nearest Neighbour, and AdaBoost.


2020 ◽  
Vol 107 ◽  
pp. 509-521 ◽  
Author(s):  
Moutaz Alazab ◽  
Mamoun Alazab ◽  
Andrii Shalaginov ◽  
Abdelwadood Mesleh ◽  
Albara Awajan

Sign in / Sign up

Export Citation Format

Share Document