Deep Neural Network Based on Android Mobile Malware Detection System Using Opcode Sequences

Author(s):  
Lichao Zhao ◽  
Dan Li ◽  
Guangcong Zheng ◽  
Wenbo Shi
2018 ◽  
Vol 115 ◽  
pp. 129-151 ◽  
Author(s):  
Giang Nguyen ◽  
Binh Minh Nguyen ◽  
Dang Tran ◽  
Ladislav Hluchy

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Songjie Wei ◽  
Zedong Zhang ◽  
Shasha Li ◽  
Pengfei Jiang

In response to the surging challenge in the number and types of mobile malware targeting smart devices and their sophistication in malicious behavior camouflage, we propose to compose a traffic behavior modeling method based on one-dimensional convolutional neural network with autoencoder and independent recurrent neural network (1DCAE-IndRNN) for mobile malware detection. The design solves the problem that most existing approaches for mobile malware traffic detection struggle with capturing the network traffic dynamics and the sequential characteristics of anomalies in the traffic. We reconstruct and apply the one-dimensional convolutional neural network to extract local features from multiple network flows. The autoencoder is applied to digest the principal traffic features from the neural network and is integrated into the independent recurrent neural network construction to highlight the sequential relationship between the highly significant features. In addition, the Softmax function with the LReLU activation function is adjusted and embedded to the neurons of the independent recurrent neural network to effectively alleviate the problem of unstable training. We conduct a series of experiments to evaluate the effectiveness of the proposed method and its performance for the 1DCAE-IndRNN-integrated detection procedure. The detection results of the public Android malware dataset CICAndMal2017 show that the proposed method achieves up to 98% detection accuracy and recall rates with clear advantages over other benchmark methods.


2015 ◽  
Vol 24 ◽  
pp. 101-116 ◽  
Author(s):  
Baojiang Cui ◽  
Haifeng Jin ◽  
Giuliana Carullo ◽  
Zheli Liu

2021 ◽  
Vol 11 (15) ◽  
pp. 7050
Author(s):  
Zeeshan Ahmad ◽  
Adnan Shahid Khan ◽  
Kashif Nisar ◽  
Iram Haider ◽  
Rosilah Hassan ◽  
...  

The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features.


Sign in / Sign up

Export Citation Format

Share Document