mobile malware detection
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 32)

H-INDEX

15
(FIVE YEARS 5)

Author(s):  
Sebastian Panman de Wit ◽  
Doina Bucur ◽  
Jeroen van der Ham

Mobile malware are malicious programs that target mobile devices. They are an increasing problem, as seen in the rise of detected mobile malware samples per year. The number of active smartphone users is expected to grow, stressing the importance of research on the detection of mobile malware. Detection methods for mobile malware exist but are still limited. In this paper, we propose dynamic malware-detection methods that use device information such as the CPU usage, battery usage, and memory usage for the detection of 10 subtypes of Mobile Trojans on the Android Operating System (OS). We use a real-life sensor dataset containing device and malware data from 47 users for a year (2016) to create multiple mobile malware detection methods. We examine which features, i.e. aspects, of a device, are most important to monitor to detect (subtypes of) Mobile Trojans. The focus of this paper is on dynamic hardware features. Using these dynamic features we apply the following machine learning classifiers: Random Forest, K-Nearest Neighbour, and AdaBoost.


2021 ◽  
Vol 61 ◽  
pp. 102929
Author(s):  
Juliza Mohamad Arif ◽  
Mohd Faizal Ab Razak ◽  
Sharfah Ratibah Tuan Mat ◽  
Suryanti Awang ◽  
Nor Syahidatul Nadiah Ismail ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1606
Author(s):  
Janaka Senanayake ◽  
Harsha Kalutarage ◽  
Mhd Omar Al-Kadri

With the increasing use of mobile devices, malware attacks are rising, especially on Android phones, which account for 72.2% of the total market share. Hackers try to attack smartphones with various methods such as credential theft, surveillance, and malicious advertising. Among numerous countermeasures, machine learning (ML)-based methods have proven to be an effective means of detecting these attacks, as they are able to derive a classifier from a set of training examples, thus eliminating the need for an explicit definition of the signatures when developing malware detectors. This paper provides a systematic review of ML-based Android malware detection techniques. It critically evaluates 106 carefully selected articles and highlights their strengths and weaknesses as well as potential improvements. Finally, the ML-based methods for detecting source code vulnerabilities are discussed, because it might be more difficult to add security after the app is deployed. Therefore, this paper aims to enable researchers to acquire in-depth knowledge in the field and to identify potential future research and development directions.


Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 185
Author(s):  
Vasileios Kouliaridis ◽  
Georgios Kambourakis

Year after year, mobile malware attacks grow in both sophistication and diffusion. As the open source Android platform continues to dominate the market, malware writers consider it as their preferred target. Almost strictly, state-of-the-art mobile malware detection solutions in the literature capitalize on machine learning to detect pieces of malware. Nevertheless, our findings clearly indicate that the majority of existing works utilize different metrics and models and employ diverse datasets and classification features stemming from disparate analysis techniques, i.e., static, dynamic, or hybrid. This complicates the cross-comparison of the various proposed detection schemes and may also raise doubts about the derived results. To address this problem, spanning a period of the last seven years, this work attempts to schematize the so far ML-powered malware detection approaches and techniques by organizing them under four axes, namely, the age of the selected dataset, the analysis type used, the employed ML techniques, and the chosen performance metrics. Moreover, based on these axes, we introduce a converging scheme which can guide future Android malware detection techniques and provide a solid baseline to machine learning practices in this field.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yao Du ◽  
Mengtian Cui ◽  
Xiaochun Cheng

As mobile phone is widely used in social network communication, it attracts numerous malicious attacks, which seriously threaten users’ personal privacy and data security. To improve the resilience to attack technologies, structural information analysis has been widely applied in mobile malware detection. However, the rapid improvement of mobile applications has brought an impressive growth of their internal structure in scale and attack technologies. It makes the timely analysis of structural information and malicious feature generation a heavy burden. In this paper, we propose a new Android malware identification approach based on malicious subgraph mining to improve the detection performance of large-scale graph structure analysis. Firstly, function call graphs (FCGs), sensitive permissions, and application programming interfaces (APIs) are generated from the decompiled files of malware. Secondly, two kinds of malicious subgraphs are generated from malware’s decompiled files and put into the feature set. At last, test applications’ safety can be automatically identified and classified into malware families by matching their FCGs with malicious structural features. To evaluate our approach, a dataset of 11,520 malware and benign applications is established. Experimental results indicate that our approach has better performance than three previous works and Androguard.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Songjie Wei ◽  
Zedong Zhang ◽  
Shasha Li ◽  
Pengfei Jiang

In response to the surging challenge in the number and types of mobile malware targeting smart devices and their sophistication in malicious behavior camouflage, we propose to compose a traffic behavior modeling method based on one-dimensional convolutional neural network with autoencoder and independent recurrent neural network (1DCAE-IndRNN) for mobile malware detection. The design solves the problem that most existing approaches for mobile malware traffic detection struggle with capturing the network traffic dynamics and the sequential characteristics of anomalies in the traffic. We reconstruct and apply the one-dimensional convolutional neural network to extract local features from multiple network flows. The autoencoder is applied to digest the principal traffic features from the neural network and is integrated into the independent recurrent neural network construction to highlight the sequential relationship between the highly significant features. In addition, the Softmax function with the LReLU activation function is adjusted and embedded to the neurons of the independent recurrent neural network to effectively alleviate the problem of unstable training. We conduct a series of experiments to evaluate the effectiveness of the proposed method and its performance for the 1DCAE-IndRNN-integrated detection procedure. The detection results of the public Android malware dataset CICAndMal2017 show that the proposed method achieves up to 98% detection accuracy and recall rates with clear advantages over other benchmark methods.


Author(s):  
Jarrett Booz ◽  
Josh McGiff ◽  
William G. Hatcher ◽  
Wei Yu ◽  
James Nguyen ◽  
...  

In this article, the authors implement a deep learning environment and fine-tune parameters to determine the optimal settings for the classification of Android malware from extracted permission data. By determining the optimal settings, the authors demonstrate the potential performance of a deep learning environment for Android malware detection. Specifically, an extensive study is conducted on various hyper-parameters to determine optimal configurations, and then a performance evaluation is carried out on those configurations to compare and maximize detection accuracy in our target networks. The results achieve a detection accuracy of approximately 95%, with an approximate F1 score of 93%. In addition, the evaluation is extended to include other machine learning frameworks, specifically comparing Microsoft Cognitive Toolkit (CNTK) and Theano with TensorFlow. The future needs are discussed in the realm of machine learning for mobile malware detection, including adversarial training, scalability, and the evaluation of additional data and features.


Sign in / Sign up

Export Citation Format

Share Document