scholarly journals A Machine Learning Technique for Semantic Search Engine

2012 ◽  
Vol 38 ◽  
pp. 2164-2171 ◽  
Author(s):  
G. Nagarajan ◽  
K.K. Thyagharajan
2021 ◽  
Author(s):  
Felipe Cujar-Rosero ◽  
David Santiago Pinchao Ortiz ◽  
Silvio Ricardo Timaran Pereira ◽  
Jimmy Mateo Guerrero Restrepo

This paper presents the final results of the research project that aimed to build a Semantic Search Engine that uses an Ontology and a model trained with Machine Learning to support the semantic search of research projects of the System of Research from the University of Nariño. For the construction of FENIX, as this Engine is called, it was used a methodology that includes the stages: appropriation of knowledge, installation and configuration of tools, libraries and technologies, collection, extraction and preparation of research projects, design and development of the Semantic Search Engine. The main results of the work were three: a) the complete construction of the Ontology with classes, object properties (predicates), data properties (attributes) and individuals (instances) in Protegé, SPARQL queries with Apache Jena Fuseki and the respective coding with Owlready2 using Jupyter Notebook with Python within the virtual environment of anaconda; b) the successful training of the model for which Machine Learning algorithms and specifically Natural Language Processing algorithms were used such as: SpaCy, NLTK, Word2vec and Doc2vec, this was also done in Jupyter Notebook with Python within the virtual environment of anaconda and with Elasticsearch; and c) the creation of FENIX managing and unifying the queries for the Ontology and for the Machine Learning model. The tests showed that FENIX was successful in all the searches that were carried out because its results were satisfactory.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


Author(s):  
Fahad Taha AL-Dhief ◽  
Nurul Mu'azzah Abdul Latiff ◽  
Nik Noordini Nik Abd. Malik ◽  
Naseer Sabri ◽  
Marina Mat Baki ◽  
...  

2021 ◽  
Author(s):  
Alexandre Oliveira Marques ◽  
Aline Nonato Sousa ◽  
Veronica Pereira Bernardes ◽  
Camila Hipolito Bernardo ◽  
Danielle Monique Reis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document